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Contents

The tutorial consists of 3 main parts:

I Part 1: An historical overview of the recognition work - Chris

I Part 2: A recipe for specifying a recognition problem - Sarah

I Part 3: State of the art in recognition literature - Reuth
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A little bit about us before we start

Chris - Ph.D UPenn, UBC, Honeywell, UEdin, Drexel, SIFT.

Sarah - Ph.D Technion, now Postdoc at Harvard.

Reuth - Ph.D. Ben-Gurion, soon Postdoc at UT Austin.

We will most probably have different answers to any of your
questions !
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Contents

Part 1:

An historical overview of the recognition work - Chris
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We were there (almost) at the beginning.

I 1956 - Dartmouth conference occurs (coins the Term AI)

I 1959 - Newell, Shaw, Simon build the General problem-solver

I 1971 - STRIPS, Fikes and Nilsson.

I 1978 - The Plan Recognition Problem: An intersection of
psychology and artificial intelligence. C. Schmidt, N.
Sridharan, J. Goodson, Artificial Intelligence, vol 11, pp.
45-83, 1978

I ... and don’t get me started on MDP/HMMs (’30s and ’40s)
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Schmidt et. al’s Def.

I ”The problem of plan recognition is to take as input a
sequence of actions performed by an actor and to infer the
goal pursued by the actor and also to organize the action
sequence in terms of a plan structure. This plan structure
explicitly describes the goal-subgoal relations among its
component actions.”
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But it was harder than we thought.

I Like many of the other (now) sub-fields of AI, we realized
1) Formalizing the problem as a logic wasn’t gonna cut it, and
2) there was more than one problem.

I At least three different problems that were at one time or
another called plan recognition.

I Activity Recognition

I Goal Recognition

I Plan Recognition
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Activity Recognition

Definition:

I INPUT: A sequence of noisy sensor inputs over time.

I OUTPUT: A unique label for each temporal subsequence.

Central problem:
Dealing with noise in the input observation stream.
Alternative characterization:
Classification/Labeling of noisy temporal observations.
Example:

I Video segmentation of football plays. (e.g. passing, clearing,
throw-in, etc...)
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Goal Recognition

Definition:

I INPUT: An ordered sequence of discrete symbolic input
tokens.

I OUTPUT: A unique label (perhaps with a probability) for
each temporal subsequence.

Central problem:
Dealing with evidence for multiple conflicting hypothesis.
Alternative characterization:
Classification/Labeling temporal observations where each
observation can contribute to many possible labels.
Example:

I Identifying computer user goals from observing their actions.
(e.g. searching web, starting a new document, confused, etc...)
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Plan Recognition

Definition:

I INPUT: An ordered sequence of discrete symbolic input
tokens.

I OUTPUT: Complex structure capturing plan being executed.
Potentially including abstract tasks that have been done and
which are yet to do and traditionally the goal of the plan.

Central problem:
Combining sequences of lower level observations into larger
structured patterns. (probabilistic or not)
Alternative characterization:
Temporal pattern matching, sequence matching.
Example:

I Identify the plan and goal of cyber intruders and their
progress though a network. (e.g. Bragging, DoS, espionage,
what machines do they pwn?...)
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Chris’ Digression on ”Intent Recognition”

Don’t use this term. Nothing good comes from it.

I If you hear/read it, ask yourself what they are actually doing.

I People that say this DON’T mean a plan, action, or state.
I Some things they might mean:

I Civilians (non-AI researchers): Ineffable magic that
differentiates human’s and synthetic agent’s actions.

I Some philosophers: A separate pro-attitude towards a plan
denoting a commitment to its execution.

I Other philosophers: A mental state in which an agent
believes a sequence of actions will cause a state they desire
and believes that they will execute those actions to that end.

I Military: What the Sr. Officer wanted to have happen.
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More domains than you can imagine.

Natural language understanding, discourse processing, video
segmentation, video games, assistive care for the elderly, process
control systems for manufacturing, software help systems,
computer network security, insider threat detection, international
planning competition domains, cooking, cognitive orthotics,
capture the flag, etc...
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Disclaimers Before We Go Further

This is NOT everything you should know about...

I these papers!

I history of plan rec!

I history of goal rec!

I history of activity rec!

Cited papers may and or may not be the most famous piece
of work.

Read the literature. You might see something else.
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Kautz1: PLAN REC

I Domain: Cooking.
I Approach: Graph covering based on a preexisting plan library.
I Core contribution: Plan libraries and formalization.
I Limitation: Assumed that a minimal graph covering was the

best (ie.non-probabilistic)

[5] v e . #(e, MakeSpaghetti) > #(e, MakeNoodles) 

[6] tl e . #(e, MakeChickenMarinara) > 
#(e, MakeMeatDish) 

The first statement, for example, means that any action instance 
which is a PrepareMeal is also a TopLevelAct 

The decomposition hierarchy is represented by implica- 
tions which assert necessary (and erhaps sufficient) conditions 
for an action instance to occur. TR is may include the fact that 
some number of subactions occur, and that various facts hold at 
various times [A1184]. These facts include the preconditions and 
effects of the action, as well as various constraints on the tem- 
poral relationships of the subactions [Al183a]. 

For the level of analysis in the present pa et, we do not 
need to distinguish the minimal necessary set o P conditions for 
an action to occur, from a larger set which may include facts 
which could be deduced from the components of the act. It is 
also convenient to eliminate some existentially quantified vari- 
ables by introducing a function S(i,e) which names the i-th 
subaction (if any) of action e. (The actual numbers are not 
important; any constant symbols can be used.) For example, 
the makePastaDish action is decomposed as follows: 

PI v e . #(e, MakePastaDish) 1 
3 tn . #(S(l.e), MakeNoodles) & 

# Boil) & 
# MakeSauce) & 
Object(S(2.e))= Result(S( 1.e)) & 
hold( noodle( Result( S( 1,e)). tn) & 
overlap(T(S(l,e)), tn) & 
during(T(S( 2,e)), tn) 

This states that every instance of MakePastaDish consists of (at 
least) three steps: making noodles, boiling them. and making a 
sauce. The result of making noodles is an object which is 
(naturally) of type noodle, for some period of time which fol- 
lows on the heels of the making. (Presumably the noodles 
cease being noodles after they are eaten.) Furthermore. the 
boiling action must occur while the noodles are, in fact, noo- 
dles. A complete decomposition of MskePastaDish would con- 
tain other facts, such that result of the MakeSauce act must be 
combined at some point with the noodles. after they are boiled. 

The constraint that all the subactions of an action occur 
during the time of the action is expressed for all acts by the 
axiom: 
[S] t/ i,e . during(T(S(i.e)), T(e)) 
It is important to note that a decomposable action can still be 
further specialized. For example, the action type MakeFettu- 
ciniMa.rinara specializes MakePastaDish and adds additional 
constraints on the above definition. In particular, the type of 
noodles made in step 1 must be fettucini, while the sauce made 
in step 3 must be marinara sauce. 

A final component of the action hierarchy are axioms 
which state action-type disjointedness. Such axioms are 
expressed with the connective “not and”, written as V: 

[9] t/ e , #(e,MakeFettuciniAlfredo) 
V #(e,MakeFettuciniMarinara) 

This simply says that a particular action cannot be borh an 
instance of making fettucini Alfred0 and an instance of making 
fettucini Marinara Disjointedness axioms can be compactly 
represented and used in resolution-based inference using tech- 
niques adapted from [Ten86]. 

- . . 

TopLevelAct 

PreDareMeal StackBlocks 

Rnil 
WI.. 

MakeNoodles 

MakeChicken 

r 

MakeFettucini MakeMarinara 

Figure 1: Action Hierarchy 

34 / SCIENCE 
1H. Kautz and J. Allen, Generalized plan recognition, Proceedings of the

National Conference on Artificial Intelligence, pp. 32-38, 1986.
Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 14 / 1



Carberry2 and Littman 3 : PLAN REC? GOAL REC?

I Domain: Natural Language Understanding, Discourse.

I Approach: Logical inference using the situation calculus.

I Core contribution: Formalizing the vast inference in language.
(Grosz, Pollack, Allen...)

I Limitation: Cost of encoding and inference

184 LITMAN AND ALLEN 

based treatment of sentence fragments (based on a parser out put of a noun 
phrase surface form with interrogative mood). 

Since the stack is empty, the plan recognizer can only construct an analysis 
corresponding to coherence preference (3). From the SURFACE-REQUEST, 
via REQUEST, chaining via decompositions produces an instantiation of 
the INTRODUCE-PLAN discourse-plan, as shown in Figure 8. The IN- 
FORMREF action will be referred to using the name “Il.” 

INTRODUCE-PLAN(Person1, Clerk 1, 1 I, ?plan) 

REQUEST(Person I, Clerk 1, I I) 

SURFACE-REQUE h T(Person I, Clerk 1, 
11 :INFORMREF(Clerk 1, Person I , ?term, EQUAL(?term,?fn(dtrainl)))) 

Figure 8. Chaining produces on intermediote plan recognition structure. 

Before pursuing the candidate plan any further, the plan recognizer checks 
on the plan’s reasonableness using the plan-based heuristics. From constraint 
satisfaction it knows that the INFORMREF must be a step in the plan being 
introduced. To satisfy this constraint, that is, STEP(Il,?plan), a new plan 
will be created and arbitrarily called PLAN2. This new state of affairs is 
shown in Figure 9, where the name of a plan structure appears at the top 
left-hand corner. In accordance with the constraint, the INFORMREF 11 is 
part of PLAN2. The second constraint, that is, AGENT(I1, Clerkl), is 
already satisfied. Finally, the recognizer verifies that the effects of the dis- 
course plan are not already true, that is, that the clerk does not already have 
PLAN2 as a goal. 

The recognizer continues with a recursive expansion from 11 and recog- 
nizes that PLAN2 is an IDENTIFY-PARAMETER plan, using decomposi- 

PLAN1 

INTRODUCE-PLAN(Person 1, Clerk 1, II, PLANZ) 

REQUEST(Person I, Clerk 1, 11) 

SURFACE-REQUES Jr (Person I, Clerk 1 ,I 1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

PLAN2 

11: INFORMREF(Clerk1, Person], ?term, EQUAL(?term, ?fn(dtrainl))) 

Figure 9. Constraint satisfaction initiates recognition of PLAN2. 

tion chaining. In satisfying the constraints on IDENTIFY-PARAMETER 
(Clerkl, Personl, ?parameter, ?action, ?plan), that is, 

2S. Carberry. Plan Recognition in Natural Language Dialogue. ACL-MIT
Press Series in Natural Language Processing. MIT Press, 1990.

3D. Littman and J. Allen, A plan recognition model for subdialogues in
conversation, Cognitive Science, vol. 11(2), pp. 163-200, 1987.
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Vilain4: PLAN REC

I Domain: Complexity analysis

I Approach: Parsing formal plan grammars.
I Core contribution:

I 1) Complexity results,
I 2) Need for generativity.

I Limitation: No actual system provided.
I Key results:

I ”Recognizing plans with abstraction and partial step order is
NP-complete,...”

I ”An acyclic hierarchy does not contain any recursive plan
definitions, and could in fact be encoded as a regular
(finite-state) grammar.”

4M. Vilain, Getting serious about parsing plans: A grammatical analysis of
plan recognition, Proceedings of AAAI-90, pp. 190-197, 1990.
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Goldman5: PLAN REC

I Domain: Story understanding.

I Approach: Dynamically assembly of Bayes nets.

I Core contribution: The problem of universal quantification and
unbound vars in stories.

I Limitation: Limited by Bayesian methods of the time, and
building Bayes nets dynamically.

5R. Goldman and E. Charniak. Probabilistic text understanding. In Statistics
and Computing, Vol 2, pp. 105-114, 1992.
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Pynadath6: PLAN REC

I Domain: Driving/Lane Selection.
I Approach: Probabilistic State Dependant Grammar to

specialized probabilistic inference
I Core contribution: Formalizing the problem in a grammar

looked at a dynamic Bayes net.
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6D. Pynadath and M. Wellman, Accounting for context in plan recognition
with application to traffic monitoring, Proceedings of UAI-95, pp. 472-481,
1995.
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Horvits7: GOAL REC

I Domain: Software assistive systems

I Approach: Bayes nets.

I Core contribution: Goal recognition in a real system.

I Limitation: Limited by Bayesian methods of the time. And
Bayes nets of our time. :-)

7E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, The
Lumiere project: Bayesian user modeling for inferring the goals and needs of
software users, Proceedings of UAI-98, pp. 256-265, 1998.
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Conati8: GOAL REC

I Domain: Educational agents.
I Approach: Bayes nets.
I Core contribution: Explicit modeling of incorrect plans.
I Limitation: Bayesian models: propositional and scale.

Figure 1. A physics problem and corresponding solution graph segment.

forces on the body, (3) write the component equations for . The resulting plan
is a partially ordered network of goals and sub-goals leading from the top-level goal to a set of
equations that are sufficient to solve for the sought quantity.

Figure 1B shows a section of the solution graph for the problem in Figure 1A involving the
application of Newton’s second law to find the value of the normal force. In the following section
we use this example to show how the solution graph is converted into a Bayesian network by the
Assessor module, and describe the different types of nodes in the network and the relationships
between them.

4.2 The Assessor’s Bayesian Network

The Assessor Bayesian network consists of two parts, one static and one dynamic. The static part
is built when the ANDES domain knowledge is defined and is maintained across problems. The
dynamic part is automatically generated when the student selects a new problem and is discarded
when the problem is solved. The following sections will describe the semantics and the structure
of the nodes in the static and in the dynamic network.

As far as the parameterization of the network is concerned, we mainly rely on canonical
interactions, known as Noisy/Leaky-OR and Noisy/Leaky-AND (Henrion, 1989), to automati-
cally specify the conditional probabilities in the network. These canonical interactions are good
approximations of the probabilistic relationships in the network and provide a fundamental ad-
vantage: they reduce logarithmically the number of conditional probabilities required to specify
the interaction between a node and its parents by requiring only a single parameter that represents
the noise or the leak in the canonical interaction. At the moment the parameters in the canonical
interactions, along with the prior probabilities in the network, derive from our rough estimates.
We plan to refine them based on the judgment of the domain experts in the ANDES project.

8C. Conati, A. Gertner, K. VanLehn, and M. Druzdzel, On-Line student
modeling for coached problem solving using Bayesian networks, Proceedings of
User Modeling-97, pp. 231-242, 1997.
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Avrahami-Zilberbrand9: PLAN REC

I Domain: RoboCup

I Approach: Marker passing over packed parse trees.

I Core contribution: More efficient plan recognition as parsing.

I Limitation: Multiple instances of the same plan.

9D. Avrahami-Zilberbrand and G. Kaminka, Fast and complete symbolic
plan recognition, Proceedings of IJCAI-05, pp. 653-658, 2005.

Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 21 / 1



Sukthankar10: ACTIVITY REC

I Domain: Video games (RUSH 2008 football).
I Approach: Support vector machines for classification
I Core contribution: Real-world deployment fast enough to

make a difference.
I Limitation: New plays?

Improving Offensive Performance Through Opponent Modeling
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Abstract

Although in theory opponent modeling can be useful in any
adversarial domain, in practice it is both difficult to do accu-
rately and to use effectively to improve game play. In this
paper, we present an approach for online opponent modeling
and illustrate how it can be used to improve offensive per-
formance in the Rush 2008 football game. In football, team
behaviors have an observable spatio-temporal structure, de-
fined by the relative physical positions of team members over
time; we demonstrate that this structure can be exploited to
recognize football plays at a very early stage of the play us-
ing a supervised learning method. Based on the teams’ play
history, our system evaluates the competitive advantage of ex-
ecuting a play switch based on the potential of other plays to
increase the yardage gained and the similarity of the candi-
date plays to the current play. In this paper, we investigate
two types of play switches: 1) whole team and 2) subgroup.
Both types of play switches improve offensive performance,
but modifying the behavior of only a key subgroup of offen-
sive players yields greater improvements in yardage gained.

1. Introduction
By accessing the play history of your opponent, it is pos-
sible to glean critical insights about future plays. This was
recently demonstrated at a soccer match by an innovative,
well-prepared goalkeeper who used his iPod to review a
video play history of the player taking a penalty kick; iden-
tifying the player’s tendency to kick to the left allowed the
goalkeeper to successfully block the shot (Bennett 2009).
Although play history can be a useful source of information,
it is difficult to utilize effectively in a situation with a large
number of multi-agent interactions. Opponent modeling can
be divided into three categories: 1) online tracking, 2) online
strategy recognition and 3) off-line review. In online track-
ing, immediate future actions of individual players (passes,
feints) are predicted, whereas in online strategy recognition,
the observer attempts to recognize the high-level strategy
used by the entire team. In offline review, general strengths,
weaknesses, and tendencies are identified in an offline set-
ting and used as part of the training/learning regimen.

This paper addresses the problem of online strategy
recognition in adversarial team games. In physical domains

Copyright c⃝ 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Rush 2008 football simulator the blue players are
the offense (Pro formation) and the red the defense (2222
formation).

(military or athletic), team behaviors often have an observ-
able spatio-temporal structure, defined by the relative phys-
ical positions of team members. This structure can be ex-
ploited to perform behavior recognition on traces of agent
activity over time. This paper describes a method for recog-
nizing defensive plays from spatio-temporal traces of player
movement in the Rush 2008 football game (Figure 1) and us-
ing this information to improve offensive play. To succeed at
American football, a team must be able to successfully exe-
cute closely-coordinated physical behavior. To achieve this
tight physical coordination, teams rely upon a pre-existing
playbook of offensive maneuvers to move the ball down the
field and defensive strategies to counter the opposing team’s
attempts to make yardage gains. Rush 2008 simulates a
modified version of American football and was developed
from the open source Rush 2005 game, which is similar in
spirit to Tecmo Bowl and NFL Blitz (Rush 2005).

Although there have been other studies examining the
problem of recognizing completed football plays, we present
results on recognizing football plays online at an early stage
of play, and demonstrate a mechanism for exploiting this
knowledge to improve a team’s offense. Our system eval-
uates the competitive advantage of executing a play switch
based on the potential of other plays to improve the yardage
gained and the similarity of the candidate plays to the cur-
rent play. Our play switch selection mechanism outperforms

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference
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10K. Laviers, G. Sukthankar, D. Aha, M. Molineaux, and C. Darken,
Improving Offensive Performance Through Opponent Modeling, Proceedings of
AIIDE, pp.58-63, 2009.
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Geib11: PLAN REC

I Domain: Synthetic domains.

I Approach: Parsing of probabilistic plan recognition as parsing.

I Core contribution: Efficient grammars for parsing, multiple
concurrent goals, pending sets.

I Limitation: Required building the complete set of parses.

11C. Geib and R. Goldman. A probabilistic plan recognition algorithm based
on plan tree grammars, Artificial Intelligence, vol 173(11), pp. 1101-1132, 2009.
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Ramirez12: GOAL REC

I Domain: IPC domains.

I Approach: Plan recognition as planning.

I Core contribution: Use of planning algorithms.

I Limitation: Initial work was actually doing goal recognition.

12M. Raḿırez, and H. Geffner, Plan recognition as planning. in Proceedings
of IJCAI, pp. 1778-1783, 2009
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Bui13: PLAN REC

I Domain: 2D navigation.

I Approach: Hierarchical Hidden Markov Models.

I Core contribution: Using HMMs at multiple levels to actually
do plan recognition

I Limitation: Fully ground models.

13H. Bui, S. Venkatesh, and G. West. Policy recognition in the Abstract
Hidden Markov Model, Journal of Artificial Intelligence Research, vol 17, pp.
451-499, 2002.
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Liao 14: ACTIVITY REC

I Domain: Daily activity tracking. (2D tracking)

I Approach: Hierarchical conditional random fields.

I Core contribution: Using HCRF, and real GPS data

I Limitation: location based...

g 1 g Tg T−1g r+1g r g rg 2 g 3 g 4 g 5 g 6 g 7

a 1 a 2 a 3 a I−1 a I

p 1 p 2

......

walk, drive, visit, sleep, pickup, get on bus

home, work, bus stop, parking lot, friend
Significant places

Activity sequence

GPS trace
association to street map 

...

Fig. 1. The concept hierarchy for location-based activity recognition. For each day of data
collection, the lowest level typically consists of several thousand GPS measurements.

GPS readings are the input to our model — a typical trace consists of approximately
one GPS reading per second; each reading is a point in 2D space. We segment a
GPS trace in order to generate a discrete sequence of activity nodes at the next
level of the model. This segmentation is done spatially, that is, each activity node
represents a set of consecutive GPS readings that are within a certain area. If a
street map is available, then we perform the segmentation by associating the GPS
readings to a discretized version of the streets in the map (in our experiments
we used 10m for discretization). This spatial segmentation is very compact and
convenient for estimating high-level activities. For instance, our model represents
a 12 hour stay at a location by a single node. Our model can also reason explicitly
about the duration of a stay, for which dynamic models such as standard dynamic
Bayesian networks or hidden Markov models have only limited support [6].

Activities are estimated for each node in the spatially segmented GPS trace, as
illustrated in Figure 1. In other words, our model labels a person’s activity
whenever she passes through or stays at a 10m patch of the environment. We
distinguish two main groups of activities, navigation activities and significant
activities. Activities related to navigation are walking, driving a car, or riding a
bus. Significant activities are typically performed while a user stays at a location,
such as work, leisure, sleep, visit, drop off / pickup, or when the user switches
transportation modes, such as getting on/off a bus, or getting in/out of a car.
To determine activities, our model relies heavily on temporal features, such as
duration or time of day, extracted from the GPS readings associated with each
activity node.

Significant places are those locations that play a significant role in the activities of a
person. Such places include a person’s home and work place, the bus stops and
parking lots the person typically uses, the homes of friends, stores the person
frequently shops in, and so on. Note that our model allows different activities
to occur at the same significant place. Furthermore, due to signal loss and noise
in the GPS readings, the same significant place can comprise multiple, different
locations.

Our activity model poses two key problems for probabilistic inference. First, the
model can become rather complex, including thousands of probabilistic nodes with
non-trivial probabilistic constraints between them. Second, a person’s significant
places depend on his activities and it is therefore not clear how to construct the model
deterministically from a GPS trace. As we will show in Section 3.3, we solve the
first problem by applying efficient, approximate inference algorithms for conditional

14L. Liao, D. Fox, and H. Kautz. Hierarchical conditional random fields for
GPS-based activity recognition, Proceedings of the 12th International
Symposium of Robotics Research (ISRR), 2005.
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A Small Nod to the Markov Decision Process People

I In a sense they were here first.
I If you have a Hidden Markov Model:

I Filtering : P(Xt |e1:t) predicting the current hidden state.
I Prediction: P(Xt+k |e1:tk > 0 predicting the next hidden state.

I What if the hidden state captured the possible plan states?
Smoothing

X 0 X 1

1E Ek tE

tXX k

Divide evidence e1:t into e1:k, ek+1:t:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) = Σxk+1
P(ek+1:t|Xk,xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1:t|xk+1)P(xk+1|Xk)

= Σxk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P(xk+1|Xk)

Chapter 15, Sections 1–5 9
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Contents

Part 2:

A recipe for specifying a recognition problem - Sarah
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Formulating a recognition problem

In this part of the tutorial we will focus on the following question:

What are the elements that need to be specified when defining a
recognition problem ?

As a running example we will use the human-robot collaboration
setting by Levine and Williams (ICAPS’14 and JAIR’18)
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Running example: Human Robot Collaboration

A person named Alice is making breakfast for herself with the help
of her trusty robot. Alice intends to either make coffee (for which
she uses a mug) or get some juice (for which she uses a glass). In
addition, Alice is having either a bagel with cream cheese or some
cereal and milk.

The robot is trying to detect Alice’s intentions, so it can assist her
by, for example, getting the utensils she needs to complete a
specific task.

In the original formulation, Alice is running late for work, so she her food and food and
drink must be ready within 7 minutes. However- we are focusing today on recognition.
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Elements of a Recognition Problem

I Environment

I Acting agent (actor)

I Recognition system (recognizer)

I (Sarah) like to think of them as stacked layers
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Environment

The setting in which agents act (a.k.a as the domain theory)
Can be described as a tuple E = 〈S , I ,A,T ,G〉 with

I State space S
I often, a set of features F is used to describe a state

I Set of possible initial states I
I Set of actions A(s) that can be performed at each state

I deterministic / stochastic actions
I temporal actions

I Transition function T
I deterministic: T : S × A→ S
I non-deterministic: T : S × A→ 2|S|

I stochastic: T : S × A× S → [0, 1]

I Set of possible goals G (states or conditions to be met)
We may also have constraints (e.g. temporal constraints) that need to be respected
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Environment E

Plan π

A complete sequence a0, a1, . . . , an of actions that takes an agent
from a (initial) state to a (goal) state.

History h

A sequence of state transitions s0, s1, . . . , sn from a (initial) state
to a (goal) state.

Execution e

A sequence of state-action transitions s0, a0, s1, a1 . . . , sn, an, sn+1

from a (initial) state to a goal.

Prefix: in recognition, we may consider the prefixes of each of the
above elements
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Environment

I In continuous domains, we may have numeric-valued features.
Actions transition from one state to another via paths through
the state space, rather than through discrete states (Vered &

Kaminka, 2017)

I Policy: mapping from states to actions (plan as a special case)

I Typically used to represent partially observable or stochastic
environments

Policy/ Plan Set

An environment induces a set Π of paths / policies that represent
the set of possible behaviors in the environment.
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Environment: Running Example

In our running example:
I A state specifies, the position of the objects (e.g. mug on table),

the status of the different sub-tasks, etc.

I Temporal actions represent the sub-tasks of breakfast preparation,
e.g., pour coffee.

I Transitions can be represented as deterministic or probabilistic (e.g.,
an action may fail with some probability)

I The agent’s objective is to prepare a breakfast comprised of a drink
(juice or coffee) and food (bagel or cereal).

I Possible plans
I Get mug, pour coffee, get bagel, toast bagel . . .
I Get bagel, toast bagel, get glass . . .
I . . .

Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 35 / 1



Actor

The actor (acting agent) specifies the assumptions made w.r.t.
how an agent with a specific goal chooses to behave in a given
environment.

I In all our settings, we are assuming agents enter the
environment and follow a policy / plan to achieve some goal.

I Agent behavior is influenced by the actor’s:
I familiarity with the environment (possibly reflected by its

sensor model)
I capabilities and preferences (e.g., can they compute an optimal

plan?)
I relationship to the recognizer

I Note: recognition in a multi-agent setting is an interesting
extension but beyond scope for today!

Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 36 / 1



Actor

When we model the actor, we need to account for the set of plans
an actor may follow to achieve each of the possible goals

In particular, we need to answer the following questions:

I How does the actor make decisions?

I What does the actor know and how does it perceive its
surrounding ?

I What is the actor’s relationship to the recognizer?

I What is the best way to represent the actor?

Remember!

We are representing the actor from the recognizer’s point of view

I (Sarah) like to think about this is the actor’s Decision Making Mechanism: mapping
θ : B× G → 2A from (belief) states to actions
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Actor

Possible answers to our questions about the actor:

I How does the actor make decisions?
I For example: actors are optimal or sub-optimal

I What does the actor know and how does it perceive its
surrounding ?

I For example: when partially informed, we need to account for
the actor’s sensor model.

I Typically, a belief state is used to represent the states an agent
deems as possible / a probability distribution over states.
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Actor

Possible answers to our questions about the actor:
I What is the actor’s relationship to the recognizer?

I Agnostic - the actor is agnostic to / unaware of the recognition
process

I Adversarial - the actor wants to deceive the recognizer (given
its own constraints)

I Intended - the actor wants to implicitly communicate its goal /
plan to the recognizer

Strongly related to the topic of explainable/ privacy preserving
planning - which assumes the role of an agent that chooses to
behave in a way that reveals / obfuscates its objective
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Representing the actor: Common Formulations

Possible answers to our questions about the actor:

I What is the best way to represent the actor?
Two commonly used representations: plan libraries and
domain theories

Plan libraries:
I Hierarchical Task Network (HTN)
I Formal Grammars
I AndOr Trees

Domain theory (planning):

I Plan recognition as planning
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Common Formulations: plan libraries

Hierarchical Task Network (HTN)
I HTN representation of the environment contains methods,

where each method
I includes a prescription for how to decompose some task into a

set of subtasks
I restrictions for the task’s applicability.
I constraints on the subtasks and the relationships among them

I Planning by task decomposition - HTN planning works by
expanding tasks and resolving conflicts iteratively, until a
conflict-free plan can be found that consists only of primitive
tasks.

Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 41 / 1



Common Formulations: HTN

Hierarchical Task Network (HTN)15

I The language L = 〈V ,C ,P,F ,T ,N〉 where
I V ,C ,P are sets of variable, constant and predicate symbols (respectively)
I F - primitive-task symbols (denoting actions)
I T - compound-task symbols
I N - labels

I L used to construct a task network of the form [(n1 : α1)...(nm : αm), φ], where
I αi ∈ F ∪ T .
I ni is a label for αi (to support multiple occurrences of αi )
I φ is a Boolean formula representing constraints (temporal, ordering, etc.)

I A method is a pair 〈NA,TN〉 where NA ∈ T and TN is a task network.

I Methods specify how to accomplish the subtasks of a non-primitive task
I In some formulations a method can have preconditions on its application

I A planning domain D is a pair 〈F ,Me〉, where F is a list of operators (one for
each primitive task), and Me is a set of methods

I A planning problem P is a tuple 〈D, I ,P〉 with planning domain D, initial state
I , and task network D

I A solution is a plan, a sequence of ground primitive tasks
15Erol, Hendler & Nau 1994
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Common Formulations: HTN
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Common Formulations: AND-OR

AND-OR trees 16

I AND-nodes represent methods for achieving a particular task
I all of the children of an AND-node must be performed in order

to perform the parent task
I a partial order may be imposed by annotating them with

pairwise ordering constraints

I OR-nodes represent choice nodes where the agent may choose
one of a number of alternate methods to achieve a task

I only one of the children of an OR-node needs to be performed
in order for the parent action to be achieved

I for this reason, ordering constraints between the children of an
OR-node are not allowed.

16Geib & Goldman 2009
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Common Formulations: AND-OR

AND

ANDAND

(AND (OR (AND get-mug grind-beans)(AND get-cup squeeze-juice)) (OR
make-bagel make-cereal)) . . .
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Common Formulations: Grammars 17

I Based on grammatical formalisms developed for use in natural
language parsing(NLP)

I Plan lexicon - defines the plans to be recognized
I Production rules represent the relationship between a

compound task and its sub-tasks
I Make Breakfast → Make Food, Make Drink

I Lexicalized grammar: every production rule has at least one
distinguished terminal in the right hand side.

I To perform recognition, observations are parsed using one or
more plan structures meeting the requirements in the lexicon

I Plans are described as plan trees, with the root as the goal
and the primitive actions as leaves

17Geib& Goldman 2009
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Common Formulations: Grammar

There are different representations of grammars for recognition.
A Formal Grammar is defined18 as a 4-tuple 〈Nt,Σ,P, S〉 where

I Nt is a finite set of nonterminal symbols

I Σ is a finite set of terminal symbols disjoint from Nt
I P is a set of production rules that have the form A→ α

where A ∈ Nt and α ⊆ Nt ∪ Σ.
I Some grammars include ordering constraints, in which case a

production rule may have the form A→ α, ω where ω is s
partial order of α. This changes the expensiveness of the
grammar.

I S is the start symbol (represented as the set of goals G ⊆ Nt
in our context).

There are many other representations, each with its pros and cons

18Hopcroft, Motwani, and Ullman 2006
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Common Formulations: Grammar

I Σ = { Get cup, Squeeze Oranges, Get Mug, Grind Beans, Bagel, Cereal }
I NT = {Make Breakfast, Make Drink, Make Food, Make Coffee, Make Juice }

I P = {
I Make Breakfast → Make Food, Make Drink
I Make Breakfast → Make Drink, Make Food
I Make Drink → Make Coffee
I Make Drink → Make Juice
I Make Coffee → Get Mug, Grind Beans . . . }

I G = { Make Breakfast }
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Common Formulations: plan and goal recognition as planning 19

I Recognition uses a domain theory to represent the actor’s
behavior.

I A generative approach that can be used to rank the different
goals according to a probability distribution P(G |~o), where ~o
is the observed action sequence

I A key benefit is the ability to use off the shelf solvers (and
optimal planners in particular) to represent the actor’s
behavior.

I The framework was first suggested for deterministic settings
(Ramirez & Geffner 2009,2010) and later extended to support
stochastic settings (Ramirez & Geffner 2011)

19Ramirez & Geffner 2010
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Common Formulations: plan and goal recognition as planning 20

The actor is represented by a planning problem P = 〈F , I ,A,G〉 where

I F is the set of features

I I is the initial state

I A is the set of deterministic actions

I G is the goal

The corresponding recognition problem is a tuple 〈P,G, ~o,Prob〉 where

I P is the planning problem

I G is the set of goals

I ~o is the observation sequence (of actions) observed

I Prob is the prior probability distribution over the goals.

20Ramirez & Geffner 2010
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Common Formulations: plan and goal recognition as planning

Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 51 / 1



Actor: notes on the formalisms

I There are many representations we did not cover.

I Regardless of which representation is used, in the context of
recognition, it is used to model the assumption the recognizer
makes about the actor, who may be using a different model.

I Ramirez and Geffner (2016) showed that the domain
formulation is equivalent to the plan library approach for
libraries with finite yield.

I Libraries can be compiled into strips theories, however
I Compilation requires bounding the depth of the plan

derivation.
I Produces a library with only finite yield.
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Recognizer (Recognition System)

The actor’s model specified how the recognizer expects the actor
to behave w.r.t each goal/ plan / activity.

For the recognizer, we need to specify the following.

I Observability - How does the recognizer perceive the actor’s
behavior? What is the recognizer’s sensor model

I Objective - What is the recognizer’s objective ?

I Possible Interventions - Can the recognizer interact with the
actor or affect its behavior?
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Recognizer’s Observability

I The recognizer’s sensor model is a mapping from executions/
plans / sequences to observation sequences ( e.g.,
Orec : E → ~o)

I Typically defined using a mapping from actions / states to
observation tokens Orec : A→ O

I The observation sequence ~o is the entity that is analyzed
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Recognizer’s Objective

In all our settings, we are assuming agents enter the environment
and follow a policy / plan to achieve some goal.

Three types of Recognition

I Plan recognition - identify the sequence of actions the actor

follows to achieve it’s goal

I Goal recognition - identify the end conditions the actor

wishes to a achieve

I Activity recognition - identify a specific action that is being

performed by the actor
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Recognizer’s Objective
The recognition task

I Typically, the recognizer wants to recognize the actor’s goal /
plan / activity as soon as possible.

I The recognition task can be generally characterized via:

I P(π|~o) for plan recognition, where π is a complete plan,

I P(G |~o) for goal recognition, where G ∈ G is the goal,

I P(a|~o) for activity recognition, where a is an activity,

where ~o is the perceived observation sequence.

I As a special case, the mappings above can be deterministic.

I The recognition result is some aggregated account of the
individual measures.

I Typically, the objective is to find the most probable goal /
plan / activity.
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The relationship between plan, activity and intent recognition

I As we heard, in the past, each task was treated separately.

I We found it hard to find a clear distinction.

I It’s a matter of perspective: the type of recognition is
defined w.r.t. to the specific setting. Activity recognition in
one setting is the goal recognition in another.
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Possible Intervention

The recognizer may have a way to affect the actor’s behavior.

I Offline

I Online

I Direct communication
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Intervention

Offline design: Goal Recognition Design (Keren, Gal and Karpas
- ICAPS 2014)

I Minimizing the Worst Case Distinctiveness (wcd) the
maximal actor progress before recognition is guaranteed.

I Given a set of possible modifications (e.g., disallowing actions,
sensor improvements), and a set of design constraints, what is
the best way to change the environment to minimize wcd.

I First model accounted for optimal agents in fully observable
environments, but later extended to support stochastic
setting, sub-optimal agents and noisy recognizer sensor
models (Keren et al., 2015; 2016a; 2016b; 2018; Wayllace et al., 2016; 2017)
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Intervention

Online: Bisson, Kabanza, Benaskeur & Irandoust 2011

I Provoking the actor to behave in a specific way by setting the
value of environment features.

I Events in which propositions are made true or false by another
agent.

I Provoking an event may cause the opponent to react upon it,
thus revealing his intended behaviour / goal.

I Deciding when and which event to provoke is treated as a
planning problem.
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Intervention

Direct Communication: Sequential Plan Recognition (Mirsky,
Stern, Gal, Kalech 2018)

I Breaking the keyhole recognition paradigm

I Asking the actor questions about its plans / goals

I Reasoning about information gain of possible queries
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Checklist

X What are the dynamics of the environment ?

X What are the assumptions made on actor behavior ?

X What is the language used to represent actor behavior ?

X What is the relationship to the recognizer ?

X How is the actor’s behavior perceived ?

X What are the possible interventions ?

X What is the recognition objective ?

Keren, Mirsky, and Geib Plan Activity and Intent Recognition Tutorial 62 / 1



Contents

Part 3:

Solution Approaches: State of the art in recognition literature -
Reuth
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Solutions approaches

Planning (〈A,S ,G ,R〉) focuses on the fact that the actor
moves from state to state and changes the
environment.

Parsing (A→ α) focuses on the fact that a plan is
constructed hierarchically in the actor’s mind.

Policies (Π : A→ N) focus on the fact that execution and
observing an execution might not be deterministic.

Raḿırez and Geffner 2013 Avrahami-Zilberbrand and Kaminka 2009 Bui, Venkatesh and West 2002
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Use case - Breakfast (adapted from Levine and Williams 2018)

Alice is making breakfast for herself with the help of her trusty
robot. The team is either making coffee (for which Alice uses a
mug, and for which the coffee beans need to be grounded) or
getting some juice (for which Alice uses a glass, and oranges need
to be pressed). To eat, the team is either making a bagel with
cream cheese or getting some cereal and milk. 21

21The original formulation takes into account temporal constraints.
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Plan Recognition as Planning
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Plan Recognition as Planning (Ramirez and Geffner 2009,2010)

I Possible Goals (G ): {at(C )}, {at(I )}, {at(K )}
I Observations (O): arrows
I ∀gi ∈ G : L(gi | O) = Ci (O)− Ci (¬O)

I Ci (O) - the cost of reaching gi while going through O
I Ci (¬O) - the cost of reaching gi without going through O

I p(gi | O) ∼= 1
eβ·L(gi |O)+1
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A Fast Goal Recognition Technique Based on Interaction
Estimates (Martin, Moreno and Smith, 2015)

I Instead of running a
planner to calculate
cost(gi ), it calculates
the cost interaction of
two or more actions

I For a goal gi with
predicates g1

i . . . , g
n
i :

cost(gi ) ∼=∑n
j=1[cost(g j

i ) +∑
k<j I (g

j
i , g

k
i )]
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Plan Recognition as Planning Revisited (Sohrabi, Riabov and Udrea, 2016)

I Comparing to the k-best plans (or diverse plans) for each goal
gi ∈ G

I Reasons about noisy and missing observations
I Given O and gi , the cost of plan π that meets gi and satisfies

O is: costgi ,O(π) = cost(π) + b1Mgi ,O(π) + b2Ngi ,O(π) where
Mgi ,O(π) is number of missing obs and Ngi ,O noisy obs
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Cost-based Goal Recognition for Path-Planning (Masters and Sardina, 2017)

I Reasons about offline vs.
online computation time

I Improves original formula
(except for one special
case): instead of Ci (¬O),
uses Ci which is
independent of O

I ∀gi ∈ G :
L(gi | O) = Ci (O)− Ci
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Heuristic Online Goal Recognition in Continuous Domains (Vered and

Kaminka, 2017)

I Enhancing PRaP to
continuous domains

I Proposes two heuristics
inspired from mirroring
neurons:

I RECOMPUTE -
recomputes new plans
only if the new
observations seems to
change the plan
significantly

I PRUNE - prunes unlikely
goals (reduces |G |)
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Landmark-based Heuristics for Goal Recognition (Pereira, Oren and Meneguzzi,

2017)

I Uses landmarks to improve runtime
I Heuristic 1: Estimate proximity to each goal (what is the ratio

between achieved and not-achieved landmarks)
I Heuristic 2: Add weights to landmarks according to their

uniqueness
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Goal Recognition Design (Keren, Karpas and Gal, 2014)

I Design for facilitating online goal recognition

I Offline analysis of the domain - defined worst case
distinctiveness wcd .

I Domain design helps to reduce wcd .
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Plan Recognition as Parsing
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PHATT : Probabilistic Hostile Agent Task Tracker (Geib and Goldman, 2005)

I Input 1: plan libraries as a set of recipes with partial ordering
(Make Breakfast → Make Drink, Make Food | φ)

I Input 2: observation sequence (〈 , 〉)
I Output: set of explanations

I In Figures: Set of recipes; Combining leftmost trees;
Explanation
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YAPPR (Geib,Maraist and Goldman 2009) & Doplar (Kabanza et al., 2013)

I Algorithms that use string rewriting instead of plan trees

I Output goals and frontier, do not output plan decomposition
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YR (Maraist, 2017)

I LR(0) parser which uses
string shuffling in various
levels of the plan library

I At any point in the
parsing, can use the shuffle
operator to get a shuffling
of the parsed string

I Can parse using a
DFA
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SBR (Avrahami-Zilberbrand and Kaminka, 2009)

I Uses a single structure to represent the plan library

I Each observation adds marks on nodes it can be mapped to

I Upon request, can answer “where are you now?” (current
state query) or “what is the path you took?” (history state
query)
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SLIM (Mirsky and Gal, 2016) & CRADLE (Mirsky and Gal, 2017)

I Both were developed to handle real-world problems

I SLIM combines top-down and bottom-up parsing

I CRADLE prunes explanations according to heuristics based on
human behaviour (e.g., coherency of plans)
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ELEXIR (Geib, 2009)

I Combines YAPPR’s compactness with PHATT’s expressibility

I Using Combinatory Categorial Grammars (CCGs)

I Instead of Make Breakfast → Make Drink, Make Food |
(Make Drink < Make Food), etc. use: Grind Beans → (Make
Breakfast / Make Food) \ Mug | (Make Breakfast / Make
Food) / Mug.
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Plan Recognition as Policies

Various works that focus
to the decision-making
part in the agent’s plan

I Contingent plans

I Bayesian
representations

I Game theory
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A General Model for Online Probabilistic Plan Recognition (Bui, 2003)

I Defined Abstract Hidden Markov Memory Model
I MDP-based policies with memory (to remember what is the

higher level goal in mind)
I Uses Particle Filter to observe current state
I In Figures: The environment; Two time slices as DBN;

Memory transition for a policy
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Game-Theoretic Approach to Adversarial Plan Recognition (Lisý et al.,

2012)

I Translating the recognition problem to an imperfect-
information extensive form game where

I Actions are simultaneous
I Actor has a set of actions to choose
I Observer has a set of classes to choose

I With perfect knowledge, a solution is a Nash-equilibrium
I Without perfect knowledge, uses Monte-Carlo sampling
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Concurrent Plan Recognition and Execution for Human-Robot
Teams (Levine and Williams, 2014)

I Reasons about temporal constrains (e.g., breakfast must be
made in 7 minutes)

I Temporal Plan Network under Uncertainty (TPNU)
I Actions are compiled into PDDL actions, and a solution is a

PDDL-based plan that is consistent with time constraints
I Solved using Assumption-based Truth Maintenance System

(ATMS)
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Join the PAIR community

I Let’s keep in touch: let us know if you have any questions:

I Chris: cgeib@planrec.org
I Sarah: sarah.e.keren@gmail.com skeren@seas.harvard.edu
I Reuth: reuthde@gmail.com

I Come to the PAIR workshop tomorrow - we have 13
excellent papers and two invited talks.

I Shlomo Zilberstein - Plan Recognition as a Multiagent
Decision problem

I David Smith - The Zoo of Interpretable Behavior

I Join our mailing list: plan-rec@googlegroups.com

I Explore our website: http://www.planrec.org/Resources.html

I Join us in organizing PAIR workshops
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