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Abstract

Understanding what agents, human or automated, know and
how they choose to act given their knowledge is key to the
ability to interpret their behavior and recognize what they are
trying to achieve. Moreover, it may be possible to facilitate
the recognition task by controlling the agent’s access to in-
formation, a notion we refer to as information shaping. Rely-
ing on these observations, we consider here a two agent goal
recognition setting; one agent, the actor, is partially informed
and operates in an environment to achieve some goal, agnos-
tic to the fact its1 behavior may be monitored. The second
agent, the recognizer, has perfect information, except for the
actor’s goal, which it tries to deduce by observing the actor’s
behavior. As a one time offline intervention, and with the ob-
jective of facilitating its ability to recognize the actor’s goal as
soon as possible, the recognizer can apply information shap-
ing by revealing a bounded number of information items to
the actor. Since the space of information items to reveal may
be large, and since the goal of more informed agents is not
necessarily easier to detect, information shaping needs to be
done carefully and efficiently. After formally defining this
new setting, we suggest several approaches for its solution
and evaluate them on a set of standard benchmarks. Our re-
sults show the ability to facilitate recognition via information
shaping, and the efficiency of our solution methods.

Introduction
We support a two agent setting, where a partially informed
agent, the actor, acts in a deterministic environment to
achieve some goal. The actor is not aware or indifferent to
the fact its behavior may be monitored by the second agent,
the recognizer, which has perfect knowledge, but does not
know the actor’s goal, and tries to deduce it as early as pos-
sible, by analyzing the actor’s perceived behavior.

As a one time offline intervention, and with the objective
of facilitating its ability to recognize the actor’s goal as early
as possible, the recognizer can apply information shaping,
implemented as changes to the actor’s sensor model. Such
manipulations can potentially change the actor’s behavior by
making it easier to interpret. We restrict information shaping
to be truthful, which means the information conveyed needs
to hold in the true state and cannot mislead the actor.

1we hereon use ’it’ to refer to agents, either automated or human

The ability to quickly understand what an agent is try-
ing to achieve, without expecting it to explicitly commu-
nicate its objectives, is important in many current applica-
tions. These include assistive cognition (Kautz et al. 2003),
where it may be critical to know when a visually impaired
user is approaching a hot oven, security applications, where
a system tries to detect users aiming at a specific destination
(Boddy et al. 2005), and human-robot collaborative settings
(Levine and Williams 2014), where a robot aims to recog-
nize what component a human user is trying to assemble, so
it can gather the tools needed for the task.

In the example applications above, a major task is to
efficiently perform goal recognition, i.e., understand the
goals of agents (human or virtual) by observing of their
behavior (Ramirez and Geffner 2010; Cohen et al. 1981;
Kautz and Allen 1986; Carberry 2001; Sukthankar et al.
2014). Common to all these settings, is that agents have in-
complete information about their environment. This affects
their behavior and is key to the ability to interpret it. In addi-
tion, all these settings can be controlled and modified in var-
ious ways. Specifically, since agents are partially informed,
it may be possible to control their behavior by manipulat-
ing their knowledge and the way by which they acquire new
information. Such manipulations may affect agent behavior
and can be applied to induce a behavior that can be quickly
associated to a specific goal, potentially facilitating the goal
recognition task. To demonstrate, in an assisted cognition
setting, an auditory signal can inform users about a hot oven.
Early notification potentially causes agents aiming at a dif-
ferent goal (e.g., the cupboard) to move away from the oven,
supporting early recognition of dangerous situations. To pre-
serve usability, such sensors should be distributed economi-
cally, without misleading the human user.

This work offers an extension to the goal recognition de-
sign (GRD) framework, a recent task that deals with re-
designing goal recognition settings in order to facilitate the
early online goal detection (Keren et al. 2014; 2018a).
GRD work so far assumes agents have perfect knowledge
of their environment, thus failing to account for many real-
istic goal recognition settings, as the ones provided above.
This work is the first step in extending the GRD frame-
work to support agents with incomplete knowledge. Specif-
ically, we focus on GRD in deterministic environments,
and use a contingent planning (Bonet and Geffner 2011;



Figure 1: An example of a GRD-APK problem

Brafman and Shani 2012; Muise et al. 2014; Albore et
al. 2009), to represent our actor. The design objective is
to minimize the worst case distinctiveness (wcd)(Keren et
al. 2014), denoting the maximal progress (measured as path
cost) an agent can make, before its goal can be recognized.
To minimize wcd, we suggest information shaping imple-
mented as sensor improvement modifications, that ease the
agent access to the true value of some environment variable.

The number of possible modifications may be extremely
large. Also, as we demonstrate below, the goal of more
knowledgeable agents is not necessarily easier to recognize,
so such modifications need to be chosen carefully and effi-
ciently to promote early goal recognition.

Example 1 As a simple example, consider Figure 1, depict-
ing a variation of the well known Wumpus domain(Russell
and Norvig 2016), where a partially informed actor is try-
ing to achieve one of two goals (indicated by G1 and G2

in the image), without falling into pits or encountering a
deadly wumpus. The actor knows its current position, but
initially does not know the locations of the pits and wum-
puses. Nevertheless, when in a cell adjacent to a pit, it
senses a ’breeze’. Equivalently, it can smell a Wumpus at
an adjacent cell. The recognizer is assumed to have perfect
information; it knows the locations of the actor, the pit (the
spiral at cell (2, 3)) and the wumpus (at cell (3, 2)). It an-
alyzes observations of the actor’s behavior (its transitions
between states) to recognize it’s goal as early as possible.

In our example, the actor start its progress at the state
indicated by ’init’. Since it doesn’t sense a breeze or stench,
it deduces the adjacent cells are safe, with no wumpus or
breeze. Using a contingent solver known to the recognizer,
an agent aiming at G2 will start its progress by moving up.
In contrast, an agent aiming atG1 may go either up or right.
This means that the choice to move up from the initial state,
leaves the goal unrecognized.

To promote early recognition, the recognizer can choose
to share information with the actor. In particular, it can use
its knowledge about the true positions of threats to reveal
safe cells. This choice is constraint by a design budget, lim-
iting the number of facts to reveal, and by the obligation
to convey truthful information (e.g., the recognizer cannot
claim that cell (3, 2) is safe).

If the recognizer chooses to reveal cell (5, 1) is safe,
agents aiming at G1 (originally indifferent to moving up or
right) prefer moving right from the initial state, thanks to

the added guarantees with regards to this option. In con-
trast, an actor aiming at G2 may still prefer to move up due
to the added cost of passing through (5, 1) on the way to the
goal. The goal of the actor becomes clear as soon as the
first step is performed. Note that if, in addition, the recog-
nizer reveals that cell (1, 4) is also safe the initial situation
is resumed, stressing the need to carefully select the infor-
mation to reveal to facilitate the recognition task.

The contributions of this work are fourfold. First, we ex-
tend the deterministic GRD framework to support agents
with partial information. We refer to our extended set-
ting as GRD for Agents with Partial Knowledge (GRD-
APK), and suggest information shaping modifications that
can be applied to support early goal recognition. Second,
after formally defining the GRD-APK setting, we show
why previous pruning based approaches suggested in the
GRD literature for optimal design (Keren et al. 2014;
2018a), cannot be used in this setting to guarantee an opti-
mal sequence of modifications is found. Nevertheless, since
our extended design frame induces a large space of possible
modifications, in which the evaluation of each node (goal
recognition setting) is costly, it is important to develop effi-
cient methods for redesign, even without optimality guaran-
tees. Accordingly, we describe several techniques developed
for effective and efficient design in our setting. Third, by us-
ing PDDL (McDermott et al. 1998) to represent the design
process, we offer a generic and adaptable framework for re-
designing GRD-APK settings. Finally, we implement our
suggested approaches for wcd calculation and redesign, and
evaluate our techniques. Our preliminary results on a set of
standard benchmarks demonstrate both the efficiency of our
methods and the wcd reduction achievable by our informa-
tion shaping modifications.

Background
Goal Recognition Design
Goal Recognition Design (GRD), (Keren et al. 2014; 2015;
2016a; 2018a; Wayllace et al. 2016; Son et al. 2016) is
the task of analyzing and redesigning environments (either
physical or virtual) to allow efficient online goal recogni-
tion. Following (Keren et al. 2018a), the definition of a
GRD setting includes two main components; the analyzed
goal recognition setting, and a design model.

A goal recognition setting can be defined in various ways
(see (Sukthankar et al. 2014) for a recent survey), but
typically involves two main components: a description of
the agents that act in an environment to achieve one of a
set of possible goals, and a goal recognition system (rec-
ognizer) that tries to deduce the agents’ goals by observa-
tions collected on their behavior. The recognition settings
can be classified as either ’keyhole’, when actors are ag-
nostic to the recognition process, ’adversarial’ when they
try to conceal their objectives, and ’intended’, when the ac-
tor helps the recognizer detect its objective (Carberry 2001;
Cohen et al. 1981). In this work, we assume the former, and
support settings where agent behavior is not affected by the
recognizer’s presence.



The design model specifies the way by which a goal
recognition setting can be modified. It includes the type
of modifications that can be applied, the effect each mod-
ification may have an a goal recognition setting, and possi-
ble design constraints. Modifications suggested so far in the
literature (Keren et al. 2018a) include action conditioning
modifications, that limit the applicability of actions, and sen-
sor refinements, that improve the recognizer’s perception of
the actor, itself assumed to have perfect knowledge. Design
constraints included a design budget, limiting the number
of allowed modifications, and a restriction that design could
not increase the optimal cost to any of the goals. As we show
later, we suggest new modifications relevant to our extended
GRD setting, where agents may be partially informed.

Contingent Planning
To support agents with partial knowledge, we follow (Bonet
and Geffner 2011), and consider partially observable (con-
tingent) planning formulated as follows.
Definition 1 A partially observable planning with deter-
ministic actions model ( POP-det) problem is a tuple P =
〈F ,A, I,G,O〉 where F is a set of fluent symbols,A is a set
of actions, I is a set of clauses over F-literals defining the
initial situation, G is a set of fluents-literals defining the
goal condition, and O represents the agent sensor model.

An action a ∈ A is associated with a set of literals prec(a)
representing the action’s preconditions, and a set of condi-
tional effects eff(a).The complement of a literal L is denoted
by ¬L. The sensor model O is a set of observations o ∈ O
represented as pairs (C,L) where C is a set of literals and L
is a positive literal. The pair indicates that the true value ofL
is observable when C is true. Each observation o = 〈C,L〉
can be conceived as representing a sensor on the value of L
that can be activated when C is true. We follow (Muise et
al. 2014) in supporting a model for which observations cor-
respond to sensing actions that can be applied by the agent
when the conditions hold in its current state.

A state s is a truth valuation over the fluents F , for which
the value may be ’true’ or ’false’. For an agent, the value
of a fluent may be known (’true’ or ’false’) or unknown. A
belief state b is therefore a non-empty collection of states the
agent deems possible at some point. A formula F holds in b
if it holds for every state s ∈ b. The initial belief is the set of
states that satisfy I , and the goal belief are those that satisfy
G. A formula is invariant if it is true in each possible initial
state, and remains true in any state that can be reached from
the initial state using the available actions. A fluent is hid-
den if its true value is unknown. An action a is applicable in
b if the preconditions of a hold in b, and the successor belief
state b

′
is the set of states that results from applying the ac-

tions a to each state s in b. When an observation o = (C,L)
is activated, the successor belief is the maximal set of states
in b that agree on L. An action sequence α = a0, . . . , am
(possibly containing observations) is applicable in b = b0
and results in the belief b

′
= bm+1 if the action ai maps bi

into bi+1 for i = 0, . . . ,m. An execution is the sequence of
belief states e = b0, b1, . . . , bn and history is the sequence
of actions and beliefs h = b0, a0, b1, a1, . . . , bn, an, bn+1. A

sequence is complete if the performing agent reaches a goal
belief state.

A solution to a POP-det problem P is a policy Π which
is a partial function from beliefs to action sequences. Fol-
lowing (Cimatti et al. 2003), a policy is deterministic if any
belief b is mapped to at most one action sequence. Other-
wise it is non-deterministic. There are 3 types of policies:
weak, where at least one trajectory achieves the goal, and
strong and strong cyclic, that require every possible trajec-
tory achieves the goal. Strong policies impose the extra con-
straint that trajectories need to visit any state at most once.

A variety of solvers have been developed to solve a
POP-det problem (e.g., (Bonet and Geffner 2011; Muise
et al. 2014)). Specifically, to achieve efficient solutions,
(Bonet and Geffner 2011) propose methods for simple POP-
det models. A POP-det model is simple if the non-unary
clauses in I are all invariant, and no hidden fluent appears in
the body of a conditional effect. In simple problems there is
no information loss and the model is considered monotonic.
A POP-det problem is monotonic if for every literal L, if L
is known in a reachable belief state b over a simple prob-
lem P , and b

′
is a belief reachable form b, then L is known

in b
′
. As a consequence, for every policy π and every in-

duced trajectory h = b0, . . . , bn it follows that the number
of states that make up beliefs bi is a monotonically decreas-
ing function over [0, N ], i.e. |bi| ≥ |bi+1| for every 0 ≤ i <
n. By focusing on simple problems, Bonet and Geffner ob-
tain an efficient translation that is linear in P which provides
the basis for solving P using classical planners. We hereon
assume all our problems are simple.

Goal Recognition Design Agents with Partial
Knowledge (GRD-APK)

Our focus is on using information shaping to redesign goal
recognition models with agents with partial knowledge. The
goal recognition design for agents with partial knowledge
(GRD-APK) is therefore comprised of an initial goal recog-
nition setting, a measure by which a setting is evaluated and
a design model, specifying the information shaping modifi-
cations that can be applied. We define each of these compo-
nents separately, before combining them in Definition 7.

Goal Recognition
Our goal recognition model includes two agents. The actor,
modeled as a partially informed contingent planning agent
(Definition 1) with a goal, enters the system and executes
history h until reaching a goal belief. The recognizer, with
perfect knowledge except for the actor’s goal, uses observa-
tions on the actor’s behavior to recognize its goal.

We let A, F and B represent the set of all actions, fluents,
and belief states, respectively2, and define goal recognition
for agent with partial knowledge (GR-APK) as follows.

Definition 2 Goal recognition for agents with partial
knowledge (GR-APK) is a tuple R = 〈ε,G, θ,Oac〉 where:

2Our use of the universal sets of actions, fluents and belief
states stems from our wish to support the process of modifying goal
recognition settings, which will be described in following sections.



• ε = 〈F ,A, I〉 is the environment, which consists of the
fluents F ⊆ F, actions A ⊆ A (including sensing ac-
tions) and initial state I as defined in Definition 1. In ad-
dition, the definition may include a cost C(a) associated
each action.

• G is a set of possible goals G s.t. |G| ≥ 2 and G ⊆ F .
• θ : B × G → 2A is the actor’s decision making mecha-

nism, specifying the set of actions an agent in belief state
b and goal G may execute.

• Oac is the actor sensor model.

The cost of history h, denoted Ca(h) = ΣiC(ai), is the
accumulated cost of the performed actions (equal to path
length when action cost is uniform). In executing h, the
actor is following a policy from the set Π(G) of possible
policies to its goal G ∈ G. This set is induced by the envi-
ronment ε, describing the possible states and the transitions
between them, the sensor models Oac, describing the way
the actor collects observations from its surrounding and up-
dates its belief state, and the actor decision making mech-
anism θ, specifying the actions an actor aiming at G may
execute at each belief state (our framework supports non-
deterministic policies, where there may be more than one
possible action associated with each belief state).

Note that since we are analyzing the goal recognition set-
ting, and need to account for all possible observations that
may be collected when agents are active in the system, the
definition of our goal recognition setting does not specify
a particular history to be analyzed (a typical component in
goal recognition models such as (Ramirez and Geffner 2010;
Pereira et al. 2017)). Instead, it characterizes the differ-
ent agent behaviors in the system, and the way they are per-
ceived by the recognizer.

In our setting, the actor and recognizer both know ε and
the set G of possible goals. While the actor has partial ob-
servability and collects information about the environment
via its sensor model, the recognizer knows the true state of
the world, but does not know beforehand the actor’s goal.
Also, it cannot see the actor’s actions, but can observe its
transitions between belief state. In addition, the recognizer
knows Oac, and the actor’s decision making mechanism θ.
It observes the actor’s behavior to recognize its goal as early
as possible.

Evaluating a GR-APK model
Our objective is to use design to facilitate the online recog-
nition task. Particularly, we want to minimize the worst
case distinctiveness (wcd), which represents the maximal
progress an actor can make before its goal is revealed. To
define wcd in the context of GR-APK, we therefore first de-
fine the relationship between the observations collected by
the recognizer and a goal.

Under the assumptions we make, when an actor follows a
history h, the recognizer only observes the actor’s transitions
between belief states. We say that history h satisfies a policy
π in an environment ε, if it can be generated by an agent
following π in ε. It satisfies a goal G, if π is a policy to G.

Definition 3 Given a GR-APK model R, history h satisfies
a policy π, if ∀i 0 ≤ i ≤ n, ai = π(baci ).
h satisfies goal G ∈ G if exists π ∈ Π(G) s.t. h satisfies π.

In the following, we let Grec(h) represent the set of goals
that history h satisfies, i.e., the set of goals the recognizer
deems as possible actor goals. We define an execution as
non-distinctive if it satisfies more than one goal.

Definition 4 Given a GR-APK model R, a history h is non
distinctive, if exists G,G′ s.t. G 6= G′, and h satisfies G
and G′.

We mark the set of non-distinctive histories of a GRD-
APK model T by Hnd(R). The worst case distinctiveness
(wcd) of a goal recognition model is defined as follows.

Definition 5 The worst case distinctiveness of a model R,
denoted by wcd(R) is:

wcd(R) =

{
max

α∈Hnd(R)
Ca(α) Hnd(R) 6= ∅

0 otherwise

Recall that a policy π ∈ Π(G) may be strong cyclic, po-
tentially containing infinite loops. A policy with such a cy-
cle, is considered as one that includes an infinite cost execu-
tion. In particular, this means wcd may have infinite cost.

Information Shaping for Minimizing wcd
To minimize wcd a system can be modified in various ways.
As far as redesign options, our setup supports all modifica-
tions discussed in previous works, such as those that limit
the applicability of certain actions and sensor refinement
modifications, that improve the recognizer’s sensor model.

Specific to our setting, where agents may have partial
knowledge, is the ability to control agent behavior by ma-
nipulating its knowledge and the way by which it acquires
new information from its surrounding. We restrict such ma-
nipulations to be truthful, i.e., they cannot be used to convey
false information. In the context of contingent agents, this
requirement is naturally implemented by improving the ac-
tor’s sensor model, thus facilitating access to the true value
of some environment feature. Specifically, we define sensor
extension modifications, that add a single observation to a
senor model, using O to denote the set of all sensor models.

Definition 6 A modification δ : O → O is a sensor exten-
sion if exists o = (C,L) s.t. for allO ∈ O, δ(O) = O∪{o}.

In practice, sensor extensions correspond to adding new sen-
sors to the environment, or, in the extreme case, communi-
cating to the actor the true value of a feature (settingC = ∅).

To demonstrate, in Example 1 the recognizer can apply
sensor extensions by allowing actors to sense a stench in
cell (1, 2), two (rather then one) cells away from the wum-
pus in cell (3,2). This extension is implemented by adding
the observation o = (C,L) to the actor’s sensor model, with
L equal to the fluent IsP itInCell(3, 2) and C correspond-
ing to AgentAtCell(1, 2). In practice, this corresponds to



a visual indication or sign, similar to the auditory signal in-
dicating the oven is on in our assisted cognition example.
The recognizer can also simply communicate with the actor
and inform it of the true location of the wumpus (’there is a
wumpus in cell 3,2’). Another, perhaps more subtle, option
is the choice to reveal a location without a wumpus (e.g., ’no
wumpus pit in cell 4,4’ implemented by setting C = True
for L = AgentAtCell(4, 4)).

Finally, using the components above we define a GRD-
APK problem as follows.

Definition 7 A goal recognition design for agents with
partial knowledge(GRD-APK) problem is defined as a tu-
ple T = 〈R0,∆,b〉 where:
• R0 is an initial goal recognition model, and
• ∆ are the possible sensor extensions
• b is a design budget, limiting the number of applied sensor

extentions.

Our objective is to find a set ∆ ⊆∆ of up to b sensor ex-
tensions to apply to R0 to minimize the wcd. This objective
is formally defined below, letting wcdmin(T ) represent the
minimal wcd achievable in a GRD model T , and R∆ rep-
resent the goal recognition model that results from applying
the set sensor extensions ∆ to R.

wcdmin(T ) = minimize
∆⊆∆

wcd(R∆
0 )

s.t.|∆| ≤ b
(1)

Any solution ∆∗ to Equation 1 is optimal. It is strongly
optimal, if it has minimal size among all optimal solutions.

Solution Methods
Equipped with the ability to change the actor’s sensor model,
we want to find the best way to apply information shaping
to minimize the wcd. The challenge of this task lies in two
key features. First, the number of possible information shap-
ing options may be extremely large and evaluating the effect
of each change may be costly, making it impractical to ex-
plore all design options exhaustively and important to de-
velop efficient search techniques. Also, as we demonstrated
in Example 1, the goal of more knowledgeable agents is not
necessarily easier to recognize. This means that applying
more information shaping modifications, and sensor exten-
sion modifications in particular, does not guarantee wcd re-
duction. This means that such modifications need to be cho-
sen carefully to promote early goal recognition.

To confront these challenges, we follow (Keren et al.
2018a) and view the design process as a search in the space
of modification sets ∆ ⊆ ∆. Each nodes is evaluated by its
wcd, which is the measure we wish to minimize. The op-
erators are the sensor extension modifications δ ∈ ∆ that
transition between goal recognition models. We start this
section by describing the way by which each node is evalu-
ated, i.e., our wcd calculation method, and then describe the
overall design process and the methods we have devised for
finding the best way to apply design.

Node Evaluation: Calculating wcd
According to Definition 5, the wcd of a model represents the
maximal prefix of a policy that satisfies more than one goal.
Recall that we assume the actor’s decision making mecha-
nism is known to the recognizer, who cannot observe which
actions are performed by the actor, but is at least as knowl-
edgeable and knows the actor’s belief state.

At the initial state, all goals are possible. As the
actor progresses in the system, the set of goals satis-
fied by its execution decreases. Given a history h =
b0, a0, b1, a1, . . . , bn, an, bn+1, we let hi represent its prefix
h = b0, a0, b1, a1, . . . , bi up to belief state i.

Lemma 1 (GR Monotonicity) Given a GRD-APK model
R and a history h of n actions, for all 0 ≤ i < j ≤ n,
Grec(hj) ⊆ Grec(hi).

Proof Skecth: The definition of the sensor models guaran-
tees the true state of the world always belongs to bac. More-
over, it guarantees the belief of the actor is monotonic, i.e.
as the actor advances, the number of states in the belief state
of cannot increase. Consequentially, as the actor advances,
the set of plans, and therefore goals, satisfied by the history
can only decrease.

Lemma 1 guarantees a non-distinctive execution cannot
have a distinctive prefix. We can therefore find the wcd of a
GR-APK model by starting at the initial state and iteratively
exploring the non-distinctive policy prefixes, until its most
distant boundary is found.

Specifically, our wcd calculation method includes two
main steps. First, we use the actor’s decision making mech-
anism to find the policy (or policy set if the decision making
mechanism is non-deterministic) for each goal. To reduce
policy size, we can use the recognizer’s knowledge to prune
impossible outcomes, accounted for by the actor’s policy,
but guaranteed not to occur in practice. To demonstrate, in
Example 1, the actor’s policy accounts for the possibility of
sensing a breeze in cell (1, 2). This branch of the policy
can be pruned, since the recognizer knows this cell is not
adjacent to a pit. At the second stage, starting at the initial
state, we iteratively explore the policy graphs of the differ-
ent goals in parallel. Each node is represented by a belief
state. For each node, we consider the action (or actions for
non-deterministic policies) an agent may execute for each
of the policy graphs. For each such action, we calculate the
outcome state and the corresponding agent belief state. We
group together transitions that lead to the same belief state,
and prune transitions that lead to belief states that are not
common to at least a pair of policies to two different goals.
We stop our search when the most distant node, represent-
ing the maximal cost of a non-distinctive execution, is found.
wcd is the cost of this execution.

Design: Algorithms for wcd Minimization
Given a way to evaluate a node, the challenge is to find an
efficient way to search through the design options. The base-
line approach for finding an optimal modification sequence
in a GRD-APK model is a breadth first search (BFS) in the



modification space3. Since this approach iteratively explores
modification sets of increasing size, it is guaranteed to find
a strongly optimal solution. However, this approach is im-
practical as the problem size increases.

To promote efficiency, several approach have been sug-
gested in the literature (Keren et al. 2018a). However, the
conditions for which the suggested approach are guaranteed
to yield optimal solutions do not hold in our setting. Specif-
ically, Keren et al. 2018a provide conditions under which it
is safe4 to prune modifications that do not affect the pair of
wcd plans of the currently explored node, i.e., the plans that
share the maximal non-distinctive prefix. Specifically, one
of the conditions requires that a GRD model is monotonic-
nd, i.e., no new non-distinctive paths can be added to the
model via design (and the wcd cannot increase). This prun-
ing approach is not safe in our GRD-APK setting since
our models are not monotonic-nd when information shap-
ing modifications are used. As demonstrated in Example 1,
the wcd can both increase and decrease as agents become
more knowledgeable.

Even without the guarantees for strongly optimal solu-
tions, efficiency is still a high priority. We therefore perform
a heuristic best first search in the modification space. To
guide the search, we map each modification to a superset of
modifications to which it belongs, and use the value of ap-
plying the superset as a heuristic estimation of the node. We
cache computed results, and reuse them for each modifica-
tion that is mapped to the same superset.

To implement this approach, we exploit the fact that sen-
sor extensions can be represented as parameterized modifi-
cations. We implement our approach by considering padded
modification sequences, which include the set of modifica-
tions that share some value of a modification parameter with
the one we want to evaluate. These values are stored and
reused for all sequences that map to the same padded se-
quence. For example, to assess the value of a sensor exten-
sion that reveals the true value of an existence of a wum-
pus in cell (1, 5) (IsWumpusInCell(1, 5)), we consider a
modification that reveals this value for all cells in row 1. We
reuse this value to estimate the value of modifications for
cells (1, 2), (1, 3) etc.

The benefit of this approach, which we call padding
heuristic, comes from the ability to store and reuse pre-
computed values, thus avoiding redundant computation of
many nodes. This is an adaptation of the relaxed modifi-
cation heuristic, suggested by Keren et al. 2018b, where
padding is used to produce admissible estimations (and
strongly optimal solutions) to an equi-reward utility maxi-
mizig design problem, where the objective is to maximize
agent utility.

Since, as we demonstrated in Example 1, adding informa-
tion shaping modifications can both increase and decrease
the wcd, our approach cannot be shown to be admissible in
our context, i.e., it cannot be shown to always underestimate

3in the case of a non-uniform cost for applying sensor exten-
sion, we can replace the BFS with a Dijkstra-based exploration.

4according to (Wehrle and Helmert 2014), pruning is safe as
long as at least one optimal solution is not pruned.

the wcd. This means that our suggested heuristic approach
does not necessarily produce optimal solutions when used to
guide a best first search. We therefore suggest to enhance of
our approach, by considering different patterns according to
which the value of a modification is estimated. In the con-
text of parameterized modifications, this means we consider
different combinations of parameters according to which
padding is performed. The heuristic value of a modification
is then the minimal value among the different computations.
For example, to assess the value of the sensor extension
mentioned above, we use the value achieved when reveal-
ing the value of all cells in row 1 (IsWumpusInCell(1, 1),
IsWumpusInCell(1, 2), . . . ). We also consider the mod-
ification set that reveals the value of all cells in column 5
(IsWumpusInCell(1, 5), IsWumpusInCell(2, 5), . . . ).
The heuristic value is the minimal value among the two. As
before, we cache and reuse the computed values. We call
this approach multi-pattern padding heuristic. While com-
putationally more demanding than the padding heuristic, by
accounting for more aspects of the problem we can poten-
tially increase the information provided by the heuristic.

Preliminary Empirical Evaluation
The objectives of our evaluation are twofold. First, we want
to measure the effect sensor extensions have on wcd. Sec-
ond, we want to measure the efficiency of our suggested de-
sign approach, comparing it to an exhaustive best first search
exploration of the space of modifications.
Dataset We used 4 domains adapted from Bonet and Geffner
2011, using 20 instances of each.
• WUMPUS: corresponding to the setting in Example 1.
• C-BALLS (Colored-balls): the actor navigates a grid to

pick up and deliver balls of different colors to destinations
that depend on the color of the ball. The positions and
colors of the balls are unknown to the actor, but when at a
position, it observes if there are balls there, and if so, their
colors.

• ROCK (Rock sample): a robot must navigate a grid in
order to locate good rocks to sample. The robot has a
sensor that detects good rocks at its vicinity, defined by
the height of the antenna when the sensor is active.

• TRAIL: An agent must follow a trail of bits in a rectan-
gular grid. The agent does not know the trail but it senses
the bits surrounding it.
The adaptation from contingent planning to our GRD-

APK setting involves specifying for each instance the set of
possible goals and the set of possible sensor extension modi-
fications. Table 1 specified how these were implemented for
each domain.

Possible Goals Sensor Extensions
WUMPUS gold locations reveal safe cells
C-BALLS ball distribution reveal locations without a ball

ROCK rocks to sample reveal rock quality
TRAIL the final stone reveal stone locations

Table 1: Possible goals and design options for each domain

To support the design process, we introduced a PDDL file
specifying the available modifications (and their precondi-



tions). Sensor extension modifications were implemented as
design actions, that add to the initial state fluents that repre-
sent the true value of some variable.
Setup We used the k-replanner (Bonet and Geffner 2011) to
represent the actor’s decision making mechanism and pro-
duce the plan an actor would follow w.r.t. to each goal.
This means that actor follows a planning under optimism
approach; it makes the most convenient assumptions about
the values of the hidden variables, executes the plan that is
obtained from the resulting classical planning problem, and
revises the assumptions and re-plans, if during the execu-
tion, the observations refute the assumptions made. It only
performs actions for which all preconditions are met, and
fails when no such action exits. We note that in our com-
putation of wcd we also considered failed executions, since
they represent valid agent behavior.

Using Python, the design process was implemented as a
best first search 5, using three heuristics for each instance.
• EX- zero heuristic which translated into an exhaustive ex-

ploration of the state space.
• PH- padding heuristic - a best first search with the padding

heuristic over the first variable of a modification.
• MPPH multi-pattern padding heuristic- same as above,

taking the minimal value over all parameters.
The design budget for all domains is 2. Each execution had
a time limit of 1,800 seconds and 1000 design iterations.

To parse the design file, we adopted the parser of the
pyperplan (Alkhazraji et al. 2016), to support the additional
functionality of contingent planning. For each modification
sequence, which represent a GRD-APK model and a node in
our search, the parser provides the applicable modifications
and the model that results from applying each of them.
Initial Results Table 2 summarizes the initial results. For
each domain, the table shows ’sol’, as the total number of
solved instances (those completed within the allocated time
and iteration limit). For instances completed by all ap-
proaches, the average wcd reduction is represented by ’∆-
wcd’, the average calculation time by ’time’, and the average
number of nodes evaluated by ’nodes’.

First, we observe that design via information shaping re-
duces the wcd for all domains, with a reduction of 5.79
(about half) in the WUMPUS domain. For all domains,
the heuristic approaches manage to solve the same num-
ber of instances and achieve the same wcd as the exhaustive
approaches. As far as computation time, the heuristic ap-
proaches manage to outperform the exhaustive approach in
all domains but TRAIL. This indicates that the overhead of
computation time due to the heuristic calculations did trans-
lated into improved performance for most domains.

Related Work
GRD, a special case of environment design (Zhang et al.
2009), was first introduced by Keren et al. (2014) and
later extended (Keren et al. 2015; Son et al. 2016;
Keren et al. 2016a; 2016b; Wayllace et al. 2016; Ang et

5a link to code and benchmarks will be available in the final
version, and omitted here to respect the blind review process.

Exhaustive PH MPPH

sol ∆wcd time nodes sol ∆wcd time nodes sol ∆wcd time nodes
WUMPUS 0.9 5.79 25.95 754.5 0.9 5.79 21.2 475.2 0.9 5.79 17.2 475.2

C-BALLS 0.6 4.1 55.41 402.5 0.6 4.1 39.82 395.2 0.6 4.1 35.6 358.2

ROCK 1.0 4.3 44.2 142.7 1.0 5.7 31.7 145.8 1.0 4.3 32.1 152.3

TRAIL 1 3.85 9.2 57.7 1 3.85 12.1 45.7 1 3.85 11.5 45.7

Table 2: Results per domain

al. 2017) by offering tools to analyze a variety of GRD set-
tings. Common to all previous GRD work, is the assumption
actors have perfect observability of their environment. This
includes the work of (Keren et al. 2015), where agents may
be sub-optimal, but their sensing and way to perceive their
environment is not modeled. Similarly, the work by (Keren
et al. 2016a; 2016b; 2018a) accounts for setting where the
recognizer has partial observability and sensor refinement
modifications are applied to enhance it’s sensor model. Our
work is the first to account for agents with partial informa-
tion and suggests new information shaping modifications,
implemented as sensor extensions, as a way to facilitate goal
recognition by reducing the wcd.

Efficient communication protocols for information shar-
ing is fundamental to various multi agent settings, e.g.,
(Xuan et al. 2001; Wu et al. 2011; Unhelkar and Shah 2016;
Dughmi and Xu 2016). This work is the first to suggest us-
ing information sharing as a one time and offline interven-
tion stage done to facilitate goal recognition.

Conclusion and Discussion

We support GRD for agents with partial knowledge, in
which the recognizer cannot see the actions performed by
the actor, but knows its belief state. We formulate the
wcd measure by which we evaluate such goal recognition
settings, and present new sensor extension modifications,
used to enhance recognition by minimizing the wcd. Us-
ing a heuristic search, our preliminary results show how
wcd can be efficiently reduced via redesign on a set of stan-
dard benchmarks adopted for our GRD setting.

There are many ways to extend this work. First, we use
qualitative contingent planning models to represent the par-
tially informed agents and their belief states. A natural next
step is to extend our setting to quantitative models, and use
partially observable markov descision processes(pomdps)
(Kaelbling et al. 1998) to represent the actor, with belief
states represented as probability distribution over the set of
states. Another important extension involves extending our
approach beyond the keyhole recognition settings we focus
on. Transparent or explainable planning (MacNally et al.
2018) represent settings where and actors choose behaviors
that facilitate recognition. These models completely rely on
partially informed agents to be able to choose a behavior that
maximizes the implicit communication of their intentions.
In such settings, GRD can be viewed as a complementary
approach, that can be applied to alleviate the need to com-
pletely rely on the actor, and reduce the non-distinctive be-
havior that are possible in the model.
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