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Abstract

Approaches to goal recognition have progressively relaxed
the requirements about the amount of domain knowledge and
available observations, yielding accurate and efficient algo-
rithms capable of recognizing goals. However, to recognize
goals in raw data, recent approaches require either human en-
gineered domain knowledge, or samples of behavior that ac-
count for almost all actions being observed to infer possible
goals. This is clearly too strong a requirement for real-world
applications of goal recognition, and we develop an approach
that leverages advances in recurrent neural networks to per-
form goal recognition as a classification task, using encoded
plan traces for training. We empirically evaluate our approach
against the state-of-the-art in goal recognition with image-
based domains, and discuss under which conditions our ap-
proach is superior to previous ones.

1 Introduction

Goal recognition is the task of identifying the intended goal
of an agent under observation by analyzing the agent behav-
ior in an environment. Initial approaches on goal recognition
were based on planning theories, which require a substan-
tial amount of domain knowledge (Kautz and Allen 1986).
Subsequent approaches have gradually relaxed such require-
ments using expressive planning and plan-library-based for-
malisms (Avrahami-Zilberbrand and Kaminka 2005; Geib
and Steedman 2007) as well as achieving different levels
of accuracy and amount of information available in obser-
vations required to recognize goals (Martin, Moreno, and
Smith 2015; Sohrabi, Riabov, and Udrea 2016; Pereira and
Meneguzzi 2016; Pereira, Oren, and Meneguzzi 2017). Re-
cent work on goal recognition in latent space (Amado et
al. 2018) overcomes the need of a domain expert tailored
domain knowledge by building planning domain knowl-
edge from raw data and using such domain knowledge on
traditional goal recognition techniques (Pereira, Oren, and
Meneguzzi 2017) to infer goals from image data. How-
ever, to build this domain knowledge, their approach re-
quires a substantial amount of training data to create a com-
plete PDDL domain. In this paper, we try to mitigate this
problem by applying a recurrent neural network to solve the
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task of goal recognition directly rather than to use the train-
ing data to generate domain knowledge. Our main goal is to
reduce the amount of training data necessary to correctly in-
fer the intended goal of an agent by leveraging a Long short-
term memory (LSTM) network. Long short-term networks
(Hochreiter and Schmidhuber 1997) are capable of solving
classification problems by receiving streams of data and re-
turning a class based on the entirety of the data received.
These streams of data can be used to model the actions of
an agent under observation in goal recognition problems,
where the class to be recognized by the LSTM network is
the agent’s goal.

Our main contributions are twofold. First, we develop an
end-to-end machine learning technique for goal recognition
based on training an LSTM network in Section 2.4. Second,
we empirically compare the resulting approach with tradi-
tional goal recognition approaches (Ramirez and Geffner
2009; Pereira, Oren, and Meneguzzi 2017) in Section 4, dis-
cuss how our approach relates to the current state of the art
in Section 5, and in Section 6, discuss the trade-offs between
using machine learning exclusively or combining traditional
techniques with machine learning.

2 Background
2.1 Goal Recognition

Goal recognition is the task of recognizing the intended goal
that an agent (software or human) aims to achieve from ob-
servations of its acting in an environment (Sukthankar et al.
2014). Observations can be either a sequence of actions per-
formed by the agent or the consequences of such actions,
more specifically, properties as logical facts (e.g., at home,
resting). Furthermore, observations can be either seen as a
full sequence of actions or a partial subsequence of actions
performed by an agent in an environment. Plan recognition
is a related task to goal recognition, however, the objective
of this task is recognizing the plan (i.e., sequence of actions)
that an observed agent is executing to achieve a particular
goal (Sukthankar et al. 2014). Goal and plan recognition in
real-world data assume an underlying processing step that
translates raw sensor data into some kind of symbolic repre-
sentation (Sukthankar et al. 2014), as well as a model of the
observed agent’s behavior generation mechanism.



2.2 Planning

We use planning domain theories to formalize agents’
behavior and the environment description, following the
STRIPS formalism proposed by Fikes and Nilsson (1971).
A domain model is a tuple D = (R, O), where: R is a set
of predicates with typed variables. Predicates can be asso-
ciated to objects in a concrete problem (i.e., grounded) rep-
resenting logical values. Grounded predicates represent log-
ical values according to some interpretation as facts, which
are divided into two types: positive and negated facts, as
well as constants for truth (T) and falsehood (). The set F
of positive facts induces the state-space of a planning prob-
lem, which consists of the power set P(F) of such facts,
and the representation of individual states S € P(F). O is
a set of operators op = (pre(op), eff (op)), where eff (op)
can be divided into positive effects eff T (op) (add list) and
negative effects eff ~ (op) (delete list). An operator op with
all variables bound is called an action, and the collection of
all actions instantiated for a specific problem induces a state
transition function v(S,a) — P(F) that generates a new
state from the application of an action to the current state.
An instantiated action a from an operator op is applicable to
a state S iff S |= pre(a) and results in a new state S’ such
that S’ < (S U eff " (a))/eff ~(a).

A planning problem within D and a set of typed objects
Z is defined as P = (F, A, Z, G), where: F is a set of facts
(instantiated predicates from R and Z); A is a set of instan-
tiated actions from O and Z; 7 is the initial state (Z C F);
and G is a partially specified goal state, which represents a
desired state to be achieved. A plan 7 for a planning prob-
lem P is a sequence of actions (a1, as, ..., a,) that modifies
the initial state Z into a state S |= G in which the goal state
G holds by the successive execution of actions in a plan 7.
Most automated planners use the Planning Domain Defini-
tion Language (PDDL) as a standardized domain and prob-
lem representation medium (McDermott et al. 1998), which
encodes the formalism described thus far.

We follow the definition from Ramirez and
Geffner (2009; 2010) to formalize the problem of goal
recognition as planning. A goal recognition problem as
planning is a tuple Pgr = (D, F,Z,G,0), where D is a
planning domain; F is the set of facts; Z C F is an initial
state; G is the set of possible goals, which include a correct
hidden goal G* (i.e., G* € G); and O = (01,02,...,0,)
is an observation sequence of executed actions, with each
observation o; € A, and the corresponding action being
part of a valid plan 7 that sequentially transforms Z into
G*. The solution for a goal recognition problem is the
correct hidden goal G* € G that the observation sequence
O of a plan execution achieves. An observation sequence
O contains actions that represent an optimal or sub-optimal
plan that achieves a correct hidden goal, and this observation
sequence can be full or partial. A full observation sequence
represents the whole plan that achieves the hidden goal,
i.e., 100% of the actions having been observed. A partial
observation sequence represents a subsequence of the plan
for the hidden goal, such that a percentage of the actions
actually executed to achieve G* could not be executed.

2.3 Planning in Latent Space

Most planning algorithms are based on the factored transi-
tion function (S, a) that represents states as discrete facts.
This transition function is usually encoded manually by a
domain expert, and virtually all existing goal and plan recog-
nition approaches require varying degrees of domain knowl-
edge in order to recognize from observations. Automatically
generating of such domain knowledge involves at least two
processes: (1) converting real-world data into a factored rep-
resentation (i.e., the predicates in R); and (2) generating a
transition function (i.e., the set of operators O) from traces
of the factored representation. Although a few approaches
have tackled the challenge of applying learning to models
of transition functions (Jiménez et al. 2012), almost no ap-
proaches have addressed the problem of generating domain
models from real world data. Recently, Asai and Fuku-
naga (2017) developed an approach to planning that gen-
erates domain models from images of the visualization of
the state of simple games and problems, such as the sliding
blocks puzzle or towers of Hanoi. This approach uses an au-
toencoder (Vincent et al. 2008) neural network to automat-
ically generate two functions with regard to an input image
X and a latent representation £: an encoder ¢ : X — L and
a decoder v : L — X. In this specific case, the input is a
d-dimensional image R? and the output is an n x m matrix
R™ ™ representing n categorical variables each of which
with m categories. Basically, the latent representation is a
matrix of bits, and the latent space is every possible com-
bination of bits that we can represent in this n X m matrix.
When m is two, the output of this auto-encoder corresponds
to binary variables that can be interpreted as propositional
logic symbols comprising the F component of a planning
domain (without the intermediary step of the generating the
set R of predicates).

The resulting representation in latent space is amenable
to automatically inducing a transition function + from pairs
of states under the assumption that state transitions corre-
spond exactly to pairs of consecutive images in the observed
traces. Under this assumption, they generate a large number
of propositional actions representing changes between these
images as add and delete effects of STRIPS-style actions.
The resulting domain representation encodes in latent-space
the propositional features from the images. LatPlana is a
heuristic-based forward-search planner (Asai and Fukunaga
2017) that uses this representation to plan solutions for prob-
lems derived from images of the initial and target state us-
ing the encoded domains. Preliminary experimentation with
LatPlana (Asai and Fukunaga 2017) shows that heuristics
from the planning literature (Geffner and Bonet 2013, Chap-
ter 3) are still applicable, however, given the propositional
nature of the encoding, they are not so informative. Such
lack of informativeness provides a challenge to the applica-
tion of goal and plan recognition approaches in latent-space.
As we see in Section 2.4, in order to successfully employ
efficient goal recognition approaches, we need not only to
learn a consistent latent representation of states, but also to
use the propositional transition function induced from state
pairs to generate STRIPS-style operators.
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Figure 1: Image goal recognition problem.
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2.4 Goal Recognition in Latent Space

Goal recognition in Latent Space is a technique to apply
classical goal recognition algorithms in raw data (such as
images) by converting it into a latent representation (Amado
et al. 2018). In Figure 1, we provide an example of the goal
recognition problem in image domains. We want to infer
what is the correct image configuration that the agent is try-
ing to achieve from the set of candidate goals using only ob-
servations consisting of intermediate image configurations.
As we can see, inferring the correct goal in such task is not
trivial, as the small number of observations provide little in-
formation.

To recognize goals in image based domains, Amado et
al. (2018) proposed four steps. First, we must develop an
autoencoder capable of creating a latent representation to a
state of such image domain. Second, since classical goal
recognition approaches require a PDDL domain, we need a
technique capable of extracting a PDDL domain from the
latent representation of the transition of the domain. Third,
we must convert to a latent representation a set of images
representing, the initial state Z, the set of facts F and a set
of possible goals G, where the hidden goal G* is included.
Finally, we can apply goal recognition techniques using the
computed tuple (D, F,Z,G,O)

The encoded representation can be achieved by using the
an autoencoder similar to the one described by Asai and
Fukunaga (2017) with the Gumbel softmax (Gumbel 1954)
activation function. Each domain requires one autoencoder
capable to converting an image state of the domain to a latent
representation. We preprocessed these images by applying a
grayscale filter and then binarizing the resulting image. With
a trained autoencoder for each domain it is possible to out-
put a PDDL domain using the Action Learner develop by
Amado et al. (2018). This PDDL domain will have a com-
pressed number of actions to improve the speed of the goal
recognition process.

Following Section 2.2, we represent a goal recognition
problem by the tuple Por = (D, F,Z,G,0). We extract
the domain D using the Action Leaner, and the facts JF rep-
resented by the latent space representation. We compute the
initial state Z, a set of candidate goals G, and finally a set
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Figure 2: Image goal recognition process.

of observations O. To compute Z and the set of goals G,
we use the image representations of these states and con-
vert them to latent representation using the trained autoen-
coder. To derive the observations O, we take pairs of images
representing of the environment. These images are encoded
to the latent representation, and then by using the PDDL
domain we extracted, we compute which action from the
PDDL domain was responsible for such state transition. Af-
ter building a goal recognition problem, we can now apply
off-the-shelf goal recognition techniques, such as (Ramirez
and Geffner 2009; Ramirez and Geffner 2010; Sohrabi, Ri-
abov, and Udrea 2016; Pereira, Oren, and Meneguzzi 2017).
The output of such techniques is the goal with highest prob-
ability of being the correct one, in the latent space represen-
tation. We then decode the inferred goal, obtaining its image
representation using the decoder. This process is illustrated
in Figure 2.

2.5 Long Short-Term Memory Networks

A Recurrent Neural Network (RNN) is a network that at-
tempts to model a sequence of dependent events occurring
through time such as financial time series (Akita et al. 2016),
language modeling (Sundermeyer, Ney, and Schliiter 2015)
and so on. The recurrence is performed by feeding the input
layer of the network at time ¢ 4+ 1 with the output of the net-
work layer at time ¢, keeping a “memory” of the past events.
Unfortunately, RNNs suffer with well-known vanishing gra-
dient problem (Bengio, Simard, and Frasconi 1994), i.e., the
gradients that are backpropagated thought the network dur-
ing the training phase tend to decay or grow exponentially.
Therefore, as dependencies in RNNs get longer, the gradient
calculation becomes unstable, limiting the network to learn
long-range dependencies.

In order to get rid of the vanishing gradient problem,
Hochreiter and Schmidhuber (1997) propose an RNN archi-
tecture called Long Short-Term Memory (LSTM) network
that modifies the original recurrent cell such that vanishing
and exploding gradients are avoided, whereas the training
algorithm is left unchanged. An LSTM cell contains mainly
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four components called cell state, forget gate, input gate and
output gate. The cell state (C') is responsible for passing the
information through the cell to the next LSTM cell, while
being changed by the gates. The forget gate decides what
information should be forget from the previous cell state.
This gate contains a sigmoid (o) layer that outputs a num-
ber between 0 and 1, where 1 means “keep all information”
and 0 means “get rid of this information”. Input gate de-
cides what information should be stored in the cell state by
applying a sigmoid layer to decide what information to keep
and a hyperbolic tangent (tanh) layer to select new candi-
dates to the cell state, performing an update to the cell state.
Finally, the output gate decides what information should be
propagated forward by performing a pointwise multiplica-
tion of a sigmoid layer, which decides what part of the input
should be forwarded, and a the cell state filtered by a tanh
operation. Figure 3 illustrates the LSTM cell with its respec-
tive gates, where yellow boxes represent layers, elements in
green represent pointwise operations (® pointwise multipli-
cation, @ pointwise addition and fanh pointwise hyperbolic
tangent function), merging arrows represent the concatena-
tion of elements and forking arrows represent the copy of
the content to multiple points.

Therefore, an LSTM performs a classification problem by
receiving a streamline of ordered data as input and returning
a class based on the data sequence received. In this work, we
use plan traces as input sequences and their corresponding
goals as training class when training the network. Hence,
the network learns the agent’s goal based on the sequence of
actions performed by the agent.

3 Goal Recognition in Latent Space
using LSTM

Current approaches to recognize goals in latent space require
enough data to build a complete PDDL domain (Amado et
al. 2018). To avoid the need of such high amount of domain
knowledge, we propose the usage of a machine learning
model capable of recognizing goals using only plan traces
as training data.

Our LSTM consists of three main layers. First, we use an
embedding layer to convert our input sequence into a dense
representation with a dimension of 1000 that will feed the
LSTM units. Second, we use an LSTM layer containing
512 units. Finally, a fully connected layer receives the out-

put from LSTM and generates the goal representation with
36 output neurons. We use sigmoid activation on the neu-
rons from the output layer and a binary cross entropy loss
using RMSprop as optimizer. Figure 4 illustrates our LSTM
architecture.

Goal

Sequence of Representation

states Embedding Fully-Connected
Layer Layer
(1000) (36)
LSTM (512)

Figure 4: LSTM Architecture

In order to create a model to recognize goals, we train
an LSTM that receives a sequence of encoded states and
predicts an encoded goal. To perform a fair comparison to
the state-of-the-art, we use as input encoded states gener-
ated by the encoder module from the autoencoder created by
Asai and Fukunaga (2017). Thus, we convert each image-
state into a latent representation (a 6x6 binary matrix). Fig-
ure 5 illustrates the process of training and testing our LSTM
model, we highlight three main steps of such process. First,
given a set of image-states representing a sequence of states
and the goal of a certain plan, we use the encoder to gener-
ate the latent representation for each image. Second, using
the representations, we train the LSTM to predict the goal
given the states. The output is a representation of this goal.
Finally, we use the decoder from Asai and Fukunaga autoen-
coder to convert the produced representation into an image.

To train the LSTM network, we require data extracted
from plans for each domain. We use plan traces gener-
ated by Amado et al. (2018), observing the states that were
reached in each plan. Each trace generated a list of states,
and then we included the goal of each trace as a class to the
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Figure 5: Goal recognition using LSTMs



LSTM. To improve accuracy in low observability scenarios,
we included partially observable traces (which means some
states were removed from the plan trace), including 10%,
30%, 50%, 70% of observability. During the training phase,
we use early stopping to avoid overfitting and set a limit of
10,000 epochs. Early stopping monitors validation loss en-
suring training will stop when loss stops decreasing.

We manipulate LSTM inputs by converting the latent rep-
resentations into a specific encoding. In our specific case,
we turn each state into an integer number, thus, we differen-
tiate them simplifying the input. An entry example of such
model is: 22, 23, 33, 48, 12, where each number is a specific
state from the state-space in its domain and the sequence is
an entire plan. The output layer is 36 binary neurons, which
we use to rebuild the latent representation by reshaping it
into a 6x6 matrix.

4 Experiments
4.1 Datasets

In order to evaluate our LSTM approach, we generated
a number of image-based datasets based on existing goal
recognition problems (Pereira and Meneguzzi 2017; Asai
and Fukunaga 2017; Amado et al. 2018). We have two
main experimental objectives: first, we want to compare the
performance of our LSTM approach with the existing ap-
proaches to goal recognition in latent space, using problems
were the goal of each problem is contained in the dataset;
second, we want to evaluate the performance of our LSTM
approach when dealing with problems were the goal is not
contained as a class in our dataset. Our evaluation dataset
thus are two distinct datasets. The first, a dataset containing
the exact problems used in (Amado et al. 2018) to evalu-
ate their latent goal recognition approach. The second, a
dataset containing new goal recognition problems, with dis-
tinct goals where these goals do not appear as a class in
the training dataset for the LSTM. In order to generate such
traces, we use a standard PDDL planner (Helmert 2006) to
search for a plan for a set of randomly generated goals. From
the resulting traces, we can generate the observations at var-
ious levels of observability by omitting the states resulting
from a percentage of the actions generated by the planner.
Using this method to produce experimental datasets, we
generated PDDL domains and images for six domains:

e Three variations of the 8-Puzzle, whose goal to order a
set of pieces when you can only move the blank space:
(1) MNIST 8-puzzle uses the handwritten digits from the
MNIST dataset as the pieces of the puzzle, with the num-
ber O representing the blank space, as illustrated in Fig-
ure 6a—every image of the dataset uses the same hand-
written digit for every repeating number; (2) Mandrill 8-
puzzle uses the image of a Mandrill, shown in Figure 6b—
we use the mandrill’s right eye as the blank space; (3)
the Spider 8-puzzle uses the image of a Spider, shown in
Figure 6¢c—Ilike the mandrill data set, we use the spider’s
right eye as the blank space;

e Two variations of the Lights-out puzzle game (Fleischer
and Yu 2013), which consists of a 4 by 4 grid of lights that
can be turned on and off, and which starts with a random

s

et
(a) MNIST (b) Mandrill (c) Spider
(d) LO Digital (e) LO Twisted (f) Hanoi

Figure 6: Sample state for each domain.

number of lights initially on—toggling any of the lights
also toggles every adjacent light—the objective is to turn
every light off; (1) lights-out digital (LO Digital) is a stan-
dard lights out representation using crosses to represent
when a light is on, illustrated in Figure 6d; (2) lights-out
twisted (LO Twisted) is a variation of the digital version
of lights out such that the image representation undergoes
a distortion filter, twisting the exact position of each light,
as seen in Figure 6e; and

e Tower of Hanoi puzzle, which consists of stacked disks
of different sizes and stakes—the objective is to move ev-
ery disk to a different stack, and we we use a version of
the puzzle with three disks and four stakes illustrated in
Figure 6f.

Table 1 describes our dataset specifications, such as do-
mains, number of traces for each domain, and training time.
As we can see, most domains have more than 1000 traces
with training times smaller than 5 minutes. As outliers, LO
digital and twisted have small number of traces, it occurs
because their plans are relatively smaller when compared to
the other domains, which limits the variety of traces.

Domain | # of Traces | Training Time (seconds)
Hanoi 1552 22.57

LO digital 230 294.58

LO twisted 224 64.33

Mandrill 2520 14.87

MNIST 1427 211.42

Spider 2216 333.25

Table 1: Dataset specifications.

4.2 Goal Recognition

To compare our approach with the existing approaches of
goal recognition for latent space, we use the exact same
dataset used in (Amado et al. 2018). This dataset consists
of 6 distinct problems for each domain, where each problem
has at least 4 distinct candidate goals. The candidate goals
are not necessary for the LSTM. From each of these prob-
lems (i.e., the initial states and candidate goals), we generate
5 different conditions for the goal recognition algorithm, by
altering the level of observability available to the algorithm.
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Table 2: Experimental results on Goal Recognition in Latent Space.
POM (hge) RG
Domain |G| (%) Obs O] 'glg)le/ (158; Agc;.;)ra/zcl)(’»% S%r?(a)u/i }1(1))9 Time (s) Accuracy % Spread in G
10 1.6 0.01070.012 60.6% 7 100.0% 6723 0.075 333% I3
. 30 4.0 0.011/0.012 60.6% / 100.0% 0/13 0.080 100.0% 23
Hanoi 4.0 50 6.3 0.012/0.013 66.6% / 100.0% .0/1.6 0.085 100.0% 3
70 8.6 0.013/0.013 100.0% / 100.0% 3/13 0.091 100.0% 3
100 11.6 0.013/0.013 100.0% / 100.0% 6/2.0 0.098 100.0% 3
10 1.0 0.09870.T11 16.6% 7 33.3% 072.6 0.179 100.0% 48
30 3.0 0.109/0.120 66.6% / 100.0% 1723 0.188 100.0% 3
8-Puzzle 6.0 50 4.0 0.117/0.129 66.6% / 100.0% 0/2.0 0.191 100.0% 3
70 53 0.121/0.135 100.0% / 100.0% 0/1.8 0.210 100.0% .0
100 7.3 0.133/0.141 100.0% / 100.0% 0/1.1 0.246 83.3% .1
10 1.0 0.68970.766 333% 766.6% 3738 576 100.0% 5.6
. 30 1.6 0.721/0.780 50.0% / 83.3% .6/45 5.79 100.0% 53
Light-Out 6.0 50 2.6 0.78870.811 33.3% /100.0% 26/53 5.82 100.0% 54
70 3.6 0.804/0.849 66.6% / 100.0% 3.8/5.0 5.90 100.0% 53
100 4.3 0.875/0.956 100.0% / 100.0% 4.6/6.0 5.93 100.0% 4.8

Table 3: Experimental results on Goal Recognition using handmade domains.

We set five different percentages of observability: 100%,
70%, 50%, 30% and 10%.

The observations from the Dataset described in Sec-
tion 4.1 are pruned so that only the specified fraction of the
original observations are left. We use two goal recognition
approaches to compare with our LSTM approach (LSTM in
Table 2): the landmark-based heuristics hy. (Goal Comple-
tion Heuristic) developed by Pereira, Oren, and Meneguzzi
(POM in in Table 2) in (Pereira, Oren, and Meneguzzi 2017),
and the most accurate approach developed by Ramirez and
Geffner (2009) (RG in in Table 2). We choose this approach
instead of the most recent one (Ramirez and Geffner 2010),
since the approach from 20009 is faster and has higher accu-
racy. These two approaches are the current state-of-the-art
in goal and plan recognition in terms of time and accuracy,
respectively.

Table 2 summarizes goal recognition performance of each
approach using the latent representation and learned PDDL
encoding provided in (Amado et al. 2018), for all domains in
the dataset and three different goal recognition approaches.
In the LSTM approach, the learned PDDL is not needed to
perform goal recognition, only the encoded traces. In this
comparison, every hidden goal was included in the LSTM
training set at least once. We guarantee that the traces used
in this comparison were not included in the training set.
Each row of this table shows averages for the number of
candidate goals |G|; the percentage of the plan that is actu-
ally observed (%) Obs; the average number of observations

per problem |O|; and, for each goal recognition approach,
the time in seconds to recognize the goal given the observa-
tions; the Accuracy % with which the approaches correctly
infer the hidden goal; and Spread in G, representing the av-
erage number of returned goals. For the LSTM is always
one, as it always returns one goal. As we can see, the LSTM
achieved overall good accuracy across all domains and ob-
servability scenarios. The execution time was between 0.3
and 0.5 seconds. While the RG approach has a good accu-
racy, it does so with a large spread and long execution times.
This trade-off is highlighted in the most complex domains,
such as Lights out digital and lights out twisted. The POM
approach also struggled with high spread in some domains,
such as the Hanoi domain, but was much faster than RG in
all scenarios. Overall the LSTM achieved better results, con-
sidering it returns always one goal and the other approaches
struggled with high spread. Thus, for recognizing goals that
are contained in the training set, the LSTM is a promising
approach that does well in both speed and accuracy.

For comparison, Table 3 shows the results of solving these
problems with hand made PDDL domains. Since there is
no learning inaccuracies in the PDDL of such domains, the
results are often superior than the learned models. However,
in the lights out model, we can see that the approaches also
struggle with a high amount of spread.

In Table 4 we display the results when dealing with goals
that are not contained in the the training set. The test set con-
sists of 6 distinct problems with distinct goals, where each



problem generates 5 traces using different observability (10,
30, 50, 70, 100%). The LSTM was unable to recognize any
of the goals that are not contained in the dataset. We present
the reconstruction accuracy, that estimates how close was
the LSTM to reconstruct the correct goal. There is no direct
comparison to other goal recognition approaches, as there is
a training data is used in the other approaches. As we can
see, our approach needs the goal to be contained in the train-
ing set, as the LSTM network is unable to reconstruct a goal
that it has not seen. In such scenarios enumerating every
possible goal is not recommended, as the number of possible
states (and so goals) in a 8-Puzzle problem is 362,880. Thus
our approach by encoding classes for classification is very
promising, as long as the training set contains many goals
(and thus classes), as it removes the burden of enumerating
every classes.

Domain Reconstruction # Problems Cor.'re'ct
Accuracy (%) Predictions
MNIST 48,6% 30 0%
Mandrill 53,6% 30 0%
Spider 58,4% 30 0%
LO-Digital 53% 30 0%
LO-Twisted 51,2% 30 0%

Table 4: LSTM results with unknown goals.

5 Related Work

Min et al. (2014) propose a deep LSTM network approach
capable of recognizing goals of a player in an educational
game scenario. The dataset used for training the deep
LSTM is a player behavior corpus consisting of distinctive
player actions. The challenge comes from recognizing goals
when handling uncertainty from noise input and non-optimal
player behavior. The LSTM is able to do standard metric-
based goal recognition and online goal recognition, as infor-
mation is fed. Although this work is very similar to ours, the
main difference is that the entirety of the goals are already
known in the work proposed by Min et al., while in our work,
we try to reconstruct the goal from the observation traces.
This is a significant difference, because our approach tries
to recognize goals without any domain knowledge from a
domain expert, making our approach completely domain in-
dependent. The results will vary depending how many times
the goal appears in the training data.

Granada et al. (Granada et al. 2017) develop a hybrid
approach that combines activity and plan recognition for
video streams. This approach uses deep learning to ana-
lyze video data (frames) in order to identify individual ac-
tions in a scene, and based on this set of identified actions, a
plan recognition algorithm then uses a plan library describ-
ing possible overarching activities for recognizing the ulti-
mate goal of the subject in a video.

Asai and Fukunaga (2017) develop a planning architec-
ture capable of planning using only pairs of images (repre-
senting, respectively, the initial and goal states) from the do-
main by converting the images into a latent space representa-

tion. Their architecture consists of a variational autoencoder
(VAE) followed by an off-the-shelf planning algorithm. The
architecture convert images into discrete latent vectors us-
ing the VAE, and uses the information in such latent vectors
to plan over the images and find a sequence of actions that
transforms the state into one matching the goal image.

Amado et al. (2018) develop an approach to recognize
goals in image domains, by converting images to a latent
representation, deriving a PDDL from domain knowledge
converted to a latent representation and then applying off-
the-shelf recognition algorithms. Our work extends this ap-
proach by using an LSTM as a recognizer. The difference
is a trade-off between domain knowledge, since the LSTM
does not require a PDDL domain, and training dataset using
plan traces that is necessary to train the LSTM network.

Ramirez and Geffner (2009) propose planning approaches
for goal and plan recognition, and instead of using plan-
libraries, they model the problem as a planning domain the-
ory with respect to a known set of candidate goals. This
work uses modified heuristics, an optimal and modified sub-
optimal planner to determine the distance to every goal in a
set of candidate goals given a sequence of observations. Re-
cently, Pereira, Oren, and Meneguzzi (2017) develop goal
recognition approaches that rely on landmarks, i.e., they de-
velop a two fast and accurate heuristics for goal recogni-
tion. Their first approach, called Goal Completion Heuris-
tic, computes the ratio between the number of achieved land-
marks and the total number of landmarks for a given candi-
date goal. The second approach, called Uniqueness Heuris-
tic, uses the concept of landmark uniqueness value, repre-
senting the information value of the landmark for a particu-
lar candidate goal when compared to landmarks for all can-
didate goals. Thus, the heuristic estimative provided by this
heuristic is the ratio between the sum of the uniqueness value
of the achieved landmarks and the sum of the uniqueness
value of all landmarks of a candidate goal.

6 Conclusions and Discussion

We developed an approach for goal recognition in la-
tent space using an LSTM network, obviating the need
for human engineering to create a task for goal recogni-
tion. Other approaches require either human engineered
domains (Pereira, Oren, and Meneguzzi 2017), or an ex-
tensive amount of domain knowledge to build a PDDL do-
main (Amado et al. 2018). Empirical evaluation on multiple
datasets shows that while we can solve some problems with
the same or higher accuracy than hand-coded problems, our
LSTM approach does not easily generalize for goals outside
the training dataset. Nevertheless, our approach provides
a meaningful initial step towards goal recognition without
human domain engineering and minimal amount of train-
ing data. In summary the advantages of using our LSTM
approach to recognize goals are: high accuracy and fast pre-
diction time when dealing with known goals; no false pos-
itive predictions, given that it only predicts a single goal;
no need of a PDDL domain, which requires extensive do-
main knowledge. However, our approach has the following
disadvantages: like most pure machine learning approaches,
performance is tied to the robustness of the training dataset;



requires training, which is unnecessary for classical goal
recognition approaches; very limited generalizability with
small datasets.

As future work, we aim to develop a dataset to test the
ability of the different goal recognition approaches in latent
space when dealing with noisy observations. In the LSTM
case, a noisy observation would be a state in the encoded
trace that is not relevant to achieving the desired goal (i.e.,
an unnecessary step performed by the agent being observed).
Since Amado et al. (2018) compute every transition of the
domain to generate a complete PDDL domain, we would
like to investigate ways to use such information to improve
the LSTM performance when dealing with goals that are not
contained in the training set. Furthermore, we would like to
study ways to improve generalization in our approach. We
envision using a percentage of the encoded transitions as a
pre-training mechanism for the network, forcing the network
to reconstruct many of the goals of the domain.
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