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Abstract

Attack graphs are a common domain representation used as
the basis for static analysis of potential attacks and defenses
in cyber security. So far they have not been used for online
goal recognition. This paper bridges this gap by using attack
graphs as a basis for goal recognition algorithms to poten-
tially improve intrusion detection and incident response. It
provides novel methods to deal with noise and partial observ-
ability that are common properties of intrusion detection sce-
narios in the real world. It compares the efficacy of several
goal recognition paradigms, including those using planning
algorithms to guide the search, as well as distance-based met-
rics using attack graphs as an underlying domain representa-
tion. Results on a real network of a large scale academic or-
ganization show that there is a clear tradeoff between the run-
time of the algorithm and its ability to recognize attacks given
noisy and partial information. However, using our proposed
techniques, most of the computation efforts are invested in
preprocessing, thus enabling the online component to per-
form well in real-time.

Introduction

As computer networks increase in size and complexity, so
does the complexity of attacks on these networks. A chal-
lenging task that emanates from the world of cyber secu-
rity is intrusion detection. An Intrusion Detection System
(IDS) is meant to monitor and detect malicious activity in
a network. A common representation of the protected net-
work used by some IDSs is Attack Graphs [Noel and Ja-
jodia, 2004; Shmaryahu et al., 2017]. An attack graph is a
description of a network that comprises hosts, their vulnera-
bilities, and their connectivity to one another. This represen-
tation has been used for off-line optimization of a network
and to detect vulnerabilities that might lead to an intrusion,
or to correlate between different alerts that arise in the net-
work in real-time [Wang et al., 2006].

When an agent attacks the system, we would like to de-
tect the intrusion as fast as possible. Moreover, we would
like to be able to reason about the goal of the attacker in or-
der to counter the attack while it is still possible. Mapping a
network to an attack graph has not been used for real-time
attack goal recognition.
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Goal recognition is a key Al problem that deals with rea-
soning about an agent’s goals according to a sequence of ob-
served actions. A goal recognition algorithm allows an ob-
server (the security operations center) to reason about the
goals and execution process of the actor (the attacker) given
a domain representation (the attack graph) and a set of ob-
served actions (the IDS alerts).

Such an algorithm receives a sequence of observations
and a domain description as input and outputs either a goal
or a distribution over all possible goals [Bui, 2003; Blaylock
and Allen, 2006; Bisson et al., 2011]. While several works
have tried to reason about probabilistic goal recognition for
cyber security, they were evaluated theoretically, under vari-
ous relaxations that are not realistic in the real-world, or us-
ing toy problems [Geib and Goldman, 2001; Bisson et al.,
2011; Mirsky et al., 2017a; Goldman et al., 2018]. More-
over, IDSs usually produce non-negligible number of false
positive and false negative alerts, so the goal recognition al-
gorithm used must be robust to faulty observations.

In this paper, we leverage the representational power of at-
tack graphs in order to perform real-time attack goal recog-
nition in a network of a large scale academic organization.

State of the art planning techniques for goal recogni-
tion [Ramirez and Geffner, 2009; Sohrabi et al., 2016;
Pereira et al., 2017b; Vered et al., 2018] require running a
planner as part of the recognition task. Running a planner is
a computationally intensive task, making stat of the art tech-
niques impractical for the task of real-time goal recognition.
We hence propose a few techniques for faster goal recogni-
tion that only require using planners for preprocessing but
not for the online queries preformed in real-time. This work
is the first to use attack graphs for online goal recognition.

Figure 1 shows the proposed approach, working in a
pipeline with existing intrusion detection approaches that
correlate and aggregate alerts [Chyssler et al., 2004; Al-
Mamory and Zhang, 2007]. The bottom of the figure shows
the target computer network.A PDDL representation of the
attack graph (Figure 1 left) is generated from the network us-
ing standard tools. Alerts generated by IDS deployed within
the network are aggregated and compiled into observations
(Figure 1 middle). Both, the alerts and the attack graph are
the inputs for the goal recognition algorithm (Figure 1 top).
The goal recognition algorithm outputs a distribution over
the goals (Figure 1 right), which can later be used to refine
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Figure 1: Components of the Proposed Approach.

the alert aggregation and correlation performed by the IDS.
The components presented in this work are represented with
solid lines, where other component which are not in the fo-
cus here are represented using dashed lines.

By providing a synergy between attack graphs and goal
recognition, this work presents the following contributions:

1. Adapting goal recognition for attack graphs.

2. A set of algorithms for goal recognition that can handle
partial observability and give real-time performance.

3. An evaluation on a real-world network, including partial
observability and noise.

Related Work

Attack Graphs

Swiler et al. [2001] have presented an automatic tool for
generating an attack graph representation of a computer net-
work. This work has been extended to handle networks at
larger scale [Noel and Jajodia, 2004]. Later Noel and Jajo-
dia [2008] presented a method for optimizing the placement
of intrusion detection system (IDS) sensors and prioritizing
IDS alerts using attack graph analysis.

Recent studies continued improving the attack graph gen-
eration and analysis approaches toward automated pentest-
ing [Hoffmann, 2015; Durkota et al., 2015; Gonda et al.,
2017; Shmaryahu et al., 2018]. Hoffmann [2015], discusses
the the suitability of the "CyberSecurity” benchmark at the
International Planning Competition (IPC) and analyzes the
importance of factoring uncertainty when it comes to under-
standing the behavior of potential hacking agents. However,
analysis of an attack graph has only focused on mapping of
vulnerabilities and pentesting, rather than on real time intru-
sion detection.

A different line of research does utilize the attack graphs
for prioritizing alerts generated by IDS. These works use at-
tack graph for alert correlations [Noel ef al., 2004; Wang et
al., 2006; Zhang et al., 2008; Roschke et al., 2011]. Modern
attacks are getting more complex and the number of alerts

emerging from the system increases significantly. Reasoning
about temporal order and causality of alerts, allows detect-
ing false negatives and false positives more efficiently Noel
et al. [2004]; Roschke et al. [2011]. This line of research
has done a great deal in refining the alerts, but did not rea-
son about the ultimate goal of the attacker.

In current work the attack graph is used for online goal
recognition. In order to do so, we feed the alerts as obser-
vations into a goal recognizer with the attack graph as the
underlying domain description.

Goal Recognition

There are several approaches to represent a domain in goal
recognition, including policy-based, library-based and oth-
ers [Avrahami-Zilberbrand and Kaminka, 2005; Vered et al.,
2018]. For example, YAPPR [Geib et al., 2008] takes as in-
put a plan library and can output both a distribution over the
goals of the actor and predictions about future actions. DO-
PLAR [Kabanza et al., 2013] extended YAPPR using prob-
abilistic reasoning to reach better performance, at the cost
of completeness. These works require to model the settings
using a plan library, which is difficult to elicit and suscep-
tible to faults. Bui [2003] uses particle filtering to provide
approximate solutions to goal recognition problems. These
works all rely on a model of the plans or strategies that the
agent can execute.

Some recent advent of work on goal recognition as plan-
ning takes as input a planning domain, usually described
in PDDL, a set of possible goals. Its output is one of the
goals or a distribution over all possible goals [Ramirez and
Geffner, 2010; Sohrabi et al., 2016; Freedman and Zilber-
stein, 2017; Shvo et al., 2017; Vered and Kaminka, 2017;
Masters and Sardina, 2017]. The benefit of this approach
is that it is model-free, in the sense that possible plan ex-
ecutions are implicit. This compact representation allows an
acting agent great flexibility, but makes the recognition of
the goals harder. Another recent heuristic goal recognition
works include landmark-based heuristics for goal recogni-
tion [Pereira et al., 2017a] and cost propogation in order to
estimate goal probabilities [Martin ef al., 2015].

While adversarial goal recognition was investigated in
the past (e.g., [Geib and Goldman, 2001; Lisy et al., 2012;
Le Guillarme et al., 2016; Mirsky et al., 2017a]), none of the
works mentioned above have combined the PDDL descrip-
tion that can represent an attack graph in order to recognize
the goals of an attacker.

Background

We start by briefly mentioning some basic concepts in the
world of goal recognition, simplified for brevity. For a
more detailed and formal description, we refer the reader
to [Ramirez and Geffner, 2009].

In a goal recognition problem, there is an observer and an
actor, and the observer needs to infer the goal of the actor.
The observer is given a domain description, describing the
possible actions that the actor can execute.

Definition 1 A Domain Description (D) is a tuple L =
(S, A, G, I), where S is a set of states, A is a set of actions
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Figure 2: An illustration of the Network Used in This Work

representing transitions from state to state, G C S is the
goals the actor can achieve and I € S is the initial state of
the settings.

Each state in S is represented by a set of predicates. All
predicates in the state are assumed to hold true in the envi-
ronment, and predicates that do not appear in the state are
assumed to be false. Each action a in A has preconditions
and effects, describing what should be true in the state be-
fore executing a and after its execution, respectively. They
are both represented as a set of predicates.

Definition 2 A plan for achieving a goal g € G is a se-
quence of actions ai, . . ., a, such that:

e The execution starts at I (the predicates in the precondi-
tion of the first action are all in I).

e For each a; € A, the state before the execution contains
all of the predicates in a;’s precondition.

e After executing all actions in the sequence, all the predi-
cates in g are true.

Similarly, an observation sequence is a partial plan. The
actor is assumed to plan by choosing a goal and then carry-
ing out a plan for reaching this goal, given a set of actions.

In this work, we assume that the agent is rational and tries
to achieve exactly one goal at a time. However, we allow
for the observation sequences to be noisy (to model possi-
ble false positives) and to have missing actions (to model
possible false negatives).

Another relaxation made in this work is that all goal
recognition techniques assume a single optimal plan. There
have been works on goal recognition as planning that reason
about k-best plans instead of a single one [Sohrabi et al.,
2016]. However, running a planner k times becomes costly
in terms of time, which is less desireable for real-time intru-
sion detection. While this might seem like a serious compro-
mise, it is worth mentioning that in many cases, the differ-
ence between plans achieving the same goal is much smaller
than plans for achieving a different goal (as shown in Mirsky
et al. [2017b]), which means that even if the actor is execut-
ing a different optimal plan than the one we chose, it is more
similar to the plan chosen for the real goal than to plans of
other goals. This makes the use of a single optimal plan a
reasonable standard for evaluation.

We will use a running example based on our intrusion de-
tection domain. In this example, we have a network of com-
puters as shown in Figure 2. Each node represents a host on
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Figure 3: A Decomposition of the First Three Possible States

the network, and vertices represent the connectivity of the
hosts. The leftmost node is the internet, and the three nodes
connected to it (the second layer from the left) are three pos-
sible access points to the network. The two rightmost nodes
are possible hosts an attacker might wish to reach.

Figure 3 shows a decomposition of the first three possi-
ble states of the world (invariants are omitted for brevity).
Each state is represented by the list of computers that are
accessible to the acting agent. The top, darkest node is the
initial state, where the acting agent only has access to the
internet. The next layer, with three nodes, represent the next
three states that the agent can reach, depending on the action
executed.

Given that host44, host4b and host47 (respectively la-
beled h44, h4b, h47 in Figure 2) are the access points to
the network, the agent will need to gain access to one of
these hosts. Assuming that we have an action in the do-
main description called Get Access(source, target), if the
agent executes Get Access(internet, host44) the next state
of the system will be that we have reached the leftmost
node in the second layer, where the agent has access to
{internet, host44}. The above action is only executable if
the following preconditions hold:

1. The agent has access to the internet (in our domain, as
described in the domain section, this is represented as a
predicate (accessible internet)).

2. The nodes internet and host44 have a connection be-

tween them (in our domain, this is represented by the
predicate (hacl internet host44).

The effect of executing this action is that now the agent has
access to host44.

Goal Recognition Techniques

All of the algorithms and techniques used in this work rely
on the same input and output: the input is a domain de-
scription, represented in PDDL format and an observation
sequence. The output is a distribution over the goals.



Formally, given a domain with n possible goals,
g1, ---,gn and an observation sequence O = 01,...,0¢, a
goal recognition algorithm estimates the probabilities that
the agent is trying to pursue each of the goals, p(g; | O).

We now detail the different algorithms used in this work,
given the same input and output as described above.

Original Goal Recognition as Planning

The first algorithm we evaluate is the algorithm by Ramirez
and Geffner [2009], which we will refer to as R&G. This
algorithm provides an estimation for a goal’s probability, by
computing a heuristic of likelihood. Intuitively, L(g; | O)
measures how close (in terms of cost) is the plan the agent
executed from the optimal plan for g;. This estimation is then
normalized over all goals to get a valid distribution p.

In order to estimate L(g; | O), R&G uses an off-the-shelf
classical planner in order to calculate two quantities:

1. The cost (number of steps to be taken) of achieving the
goal g; while passing through all the observations. This
cost is denoted C;(O).

2. The cost of achieving the goal g; without passing through
all the observations (note that passing through all but one
is valid). This cost is denoted C;(—0O).

With these two quantities, the likelihood depends on the
difference between a plan that passed through the agents ob-
served actions and the plan that does not go through these
observations to achieve the goal g;:

L(g; | 0) = 8(C:(0)=Ci(=0) "

Where [ is used to soften the impact of partially observ-
ing non-optimal plans. This heuristic is then transformed to
the probability p;, where we follow the representation from
Geffner and Bonet [2013], assuming we have an a priori uni-
form distribution over the goals:

1
p(9:|0) = I (2)

9:10)+1
After p(g;|O) is calculated for all g; € G, they are nor-
malized to provide a valid probability distribution.

Sunk Cost Variation

As shown in the empirical section, the R&G algorithm is not
susceptible to noise. We remind that this work is aimed to
provide goal recognition of an intrusion detection. As such,
the attacker might wish to obfuscate the attack by execut-
ing irrelevant actions, or the alert aggregation might produce
false positive alerts which are not part of a valid attack.

Consider the following two scenarios: in the first scenario,
a potential attacker has executed nine out of ten steps of an
attack o1, ..., 09, and then did a tenth, not related action, o.
In the second scenario, a potential attacker has executed the
first out of the ten steps of the attack, o1, and then executed
the second, not related action o.

According to the R&G algorithm with 8 = 0, when we try
to calculate the probability that the agent is trying to com-
plete the same attack (we’ll call it g), we get that:

L(g|o1,...,00,0) = L(g | 01,0) = 719 = 2.718
and respectively

p(g|o1,...,09,0) =p(g|o01,0) =0.27

This happens because the cost of executing the task is
the same, no matter when the interruption (the noisy action)
happens. However, in practice, we understand that if a po-
tential attacker has already put the effort and executed nine
out of ten steps, it is more likely that this is an actual attack
than the case when only one action is relevant.

To reason about the problem described about, we pro-
pose a different, non-constant value for the 5 parameter in
the likelihood heuristic that takes into account the cost the
attacker had paid for executing the possible attack so far
(which we refer to as sunk cost):

1
7 min(C(-0), €0 ©

Thus, we get the following likelihood heuristic:

Ci(0)—-C;(-0)

Louni(gi | O) = emn(C;(-0).C;(0n @)

Given this modification, we get that now the likelihood of
the two observation sequences is different:

11—-10

Lsunk(g | 01, ... 30976) =e © =1105
Dsunk(g | 01,...,09,0) = 0.48

while
_ 11—-10
Lsunk(g | 01,0) =e 2z =165
psunk(g ‘ 01, 6) =0.38
Plan Edit Distance

One more special trait of goal recognition for intrusion de-
tection is that we wish to be able to respond in real-time
to potential attacks. This means that the runtime of the goal
recognizer is key for good performance. Both of the methods
described above require to run a planner at least once online,
after we observe the actions: if O is not part of the optimal
plan, we will need to run a planner to calculate C;(O) and if
all observations O are part of the optimal plan, we will need
to run the planner to get C;(—0O). Since running a planner
can be costly, we propose another measure to evaluate the
cost of reaching each of the goals, given an observation se-
quence, that do not require online planner executions.
Using plan edit distance, we give a plan a cost that uses a
naive heuristic regarding the distance of a plan from each of
the goals’ optimal plans. Given an observation sequence O
and a goal g we define D(g, O) to be the edit distance of the
actions between the optimal plan and the prefix we observe.
Note that the edit distance can be calculated in several ways,
while assigning different costs to addition of actions from
removal of actions, or for accounting about the order of the
actions. We show here only the most basic calculation where
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This metric reasons about the number of actions already
executed, preferring plans which have executed more steps
from the optimal plan. It also does not require to run a plan-
ner online: the planner is only needed to find the optimal
plans, a task that can be done offline. On the other hand, this
metric is very naive, as it does not reason about the order
by which the actions have taken place, or the actual cost of
executing another action.

Given this distance metric, we calculate the probability of
an observation sequence O given g¢; (and an optimal plan for
this goal O*) as follows:

1
p(9i|0) = W

Like in the previous algorithms, after p(g;|O) is calculated
for all g; € G, they are normalized.

(©)

Alternative Plan Cost Variation

The last technique is based on the work of Felner ef al
[2007] to calculate the costs of alternative plans. Given a
distance metric between states, it computes the similarity of
a prefix to a complete sequence. Unlike the plan edit distance
method, this technique can capture more complex relations
between actions and states, assuming it is given a good dis-
tance metric.

Landmarks are facts that must be true at some point in
every valid solution plan [Hoffmann ez al., 2004]. They are
used to represent in an informed way how many of the de-
sired predicates from the goal state we have reached, and are
commonly used in planning.

We use landmarks to provide the following distance met-
ric between states in a planning domain:

Dy(s1,82) = [(Lg(s1)ULg(s2))\ (Lg(s1) N Lg(s2))] (7)

Where s, s are states, ¢ is a goal and Ly(s) is the list of
landmarks for g that were achieved in s.

This metric is different for each goal, but once the land-
marks are extracted (a process that can be done offline), in
real-time the only calculation required is counting the num-
ber of landmarks per state reached using the executed plan
(which is done by sequentially by collecting the effects of
the actions).

Next, we can create a mapping between the states of the
two plans (the optimal and the observed). Using the distance
metric described about, we can compute the cost of the map-
ping by summing the costs of the mapped states according
to Dy.

Out of the several mappings in the original paper by Fel-
ner et al. [2007], we chose the Time Dimension Mapping.
This mapping is done according to the time dimension, i.e.,
each state in the original sequence of states is mapped to
its relative state in the destination sequence according to the

proportion of its relative location on the path. This gives us
the following equation:

Sy Dy(M(sy), 5:)
k

C5(0lg) = argmin (8)
M

Where M is a conjunctive mapping from s1,..., sk to
s1,...,sr. Intuitively, we choose the mapping with the
smallest sum of distances (in terms of achieved landmarks)
between the traversed states of the observation sequence and
their mapped states in the optimal plan.

An important property of this mapping is that it is mono-
tonic, meaning that given a mapping M with M(s;) =
5%, M(siy1) = sy, it must hold that j < k. This property
makes sure that we reason about the order in which the ac-
tions are executed in the observation sequence to match the
order of the optimal plan.

However, summing the cost of this mapping might miss
important information if the observation sequence is shorter
than the optimal plan (k < n). In order to cover the remain-
ing actions in the optimal plan (k + 1,...,n) as well, we
provide another cost function which performs the opposite
mapping from s, ..., s} to s1,..., Sk in a similar way. This
function is denoted C«(O|g).

In order to reason about both scenarios, that either the ob-
servation sequence or the optimal plan is longer, we calcu-
late the averae cost of both functions. Thus, we get the fol-
lowing cost function:

Cs(0lg) + Cs-(0lg)
; ©)

This cost function reasons about the length of the obser-
vation sequence by summing the cost of two conjunctive
mappings that while each of the two mappings maintains
the monotonicity property.

Finally, the probability of an observation sequence O
given a goal g; is calculated as

C(Olg) =

1
p(9:|0) = W

Like in previous techniques, the probabilities are normal-
ized to provide a valid distribution.

(10)

Intrusion Detection Domain

The domain is based on the work of Shmaryahu [2016],
and was compiled to match the requirements of our goal
recognition techniques. The domain has 4 types of vari-
ables, host, 0s, sw, vuln, representing hosts, operating sys-
tems, software and vulnerabilities respectively.

These types are used to define 7 parameterized predicates:

1. (hacl ?src — host ?target — host) - true if src and

target are linked.

2. (controlling ?h — host) - true if the agent controls h.

3. (HostSW ?src — host 7s — sw) - true if host src runs

software s.

4. (HostOS ?src — host 70 — 0s) - true if host src runs

operating system o.
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5. (EzistVuln v —wvuln ?target — host) - true if vulner-
ability v exist in host target.

6. (Match 70—o0s 7s—sw Tv—wvuln) - true if vulnerability
v exist in software s under operating system o.

7. (accessible ?target — host) - true if host target is ac-
cessible by the agent.

In addition, the domain defines the actions the agent can
perform:

o GetAccess(sre,target), which has the precondition that
the source and target hosts are linked, and the effect is that
host target is now accessible to the agent.

o RunSW (target, sw, 0s,v) is the action used to run a
software sw on the system os of host target, that might
exploit a vulnerability v. This combination might be a
valid software usage, or an exploit.

Using these actions, reaching a goal is a process of gain-
ing access to a host, then running some software on it. This is
done repeatedly, until reaching the host we wish to control.

The specific attack graph we use in our evaluations con-
tains 60 hosts. The network architecture, operating systems
and softwares ran by each host, and the goal host are defined
by the original network scans, but the vulnerabilities data
was randomly generated so that each host has 15 possible
vulnerabilities.

As collecting real attacks on the network is not feasible,
we simulated attacks on the attack graph by using the HSP
planner [Bonet and Geffner, 2001]. We then injected noisy
observations to the plans to simulate false positive alerts and
removed observations to simulate false negative alerts.

Empirical Evaluation

This section detail the results of running the 4 goal recog-
nition techniques on a home-commodity 77 computer. All
algorithms are implemented in Python and the domain is en-
coded in PDDL. The algorithms are the original goal recog-
nition as planning (denoted R&G), sunk cost (denoted SC),
plan edit distance (denoted PED) and alternative plan cost
(denoted APC).

First, we examined whether the probability can be a true
representative of the actual goal recognizer. Figure 4 shows
the probability distribution when there are 2 possible goals
to be recognized. Goal number 1 (blue) is the real goal be-
hind the observation sequence. As seen in this figure, all of
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Figure 5: Probability Decline with Noisy Observations
(False Positives)

ratio from original probability
/

Figure 6: Probability Decline with Missing Observations
(False Negatives)

the algorithms gave it the highest probability, meaning that
they managed to capture the true goal.

Next, we looked at different false information that can in-
terrupt the recognition process. When trying to perform an
intrusion, an attacker is likely to try and obfuscate the attack.
These efforts can lead to missing observations (False Nega-
tive alerts) or noisy observations (False Positive alerts).

The first property examined is the algorithms’ sensitivity
to noisy observations. Noise can be a result of faulty sensors,
false positive alerts or when multiple plans are executed in
the same time.

Figure 6 shows the probability decline for all recognition
techniques as more observations are noisy. The x-axis shows
the Signal to Noise Ration (SNR) which represents the num-
ber of observations that were injected to the original plan in
comparison to the length of the original plan, and the y-axis
represented the percent from the probability of that original
plan that the noisy plan received.

As seen from this figure, R&G is most susceptible to noise
and the probability declines fast when introducing noisy ob-
servations. SC is the best to deal with noise until a very late
stage - it declines as well, but slower due to the plan-length
normalization of the cost. When reaching a very high SNR
(where there are 3.4 false positive per 1 true positive), the
PED technique prevails. We believe that this is due to the
fact that there is a finite number of landmarks that can be
achieved, and after a certain point this list does not change
much, and the best mapping gives a constant cost to every
new noisy observation.
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The second property examined is the algorithms’ sensitiv-
ity to missing observations. Such observations can be the re-
sults of the attacker succeeding in hiding their actions from
the alert system, or the fact that the attack is still ongoing
and not all of the attack steps has been executed yet.

Figure 6 shows the probability decline for all recognition
techniques as more observations are missing. The x-axis is
Signal Drop Ratio (SDR), representing relative proportion
of the number of observations that were removed from the
original plan, and the y-axis represented the percent from the
probability of that original plan that the partial plan received.

As seen in this figure, goal recognition as planning algo-
rithms are not sensitive to false negatives, as they complete
the needed missing observations anyway as part of their so-
Iution. However, the plan edit distance and alternative plan
cost variations both reason about the proportion of the plan
that was executed. Due to this property, there is a decline in
the probability using these techniques, where in the alterna-
tive plan cost the decline is faster.

Lastly, one of the most interesting desired properties from
a goal recognizer in an intrusion detection system, is the
ability to make a recognition in real-time. Figure 7 shows the
online and offline runtimes of each algorithm. The x-axis is
the different algorithms and the y-axis represents the time in
log scale of seconds. The real-time computation of each al-
gorithm is different: R&G and SC require to run the planner
once more per goal, to compute an alternative plan given the
observations. The PED variation is the lightest and requires
to compute the difference between the actions in the opti-
mal plan and the observation sequence. The APC variation
requires to find the landmarks achieved in the observation
sequence (a traversal over the list of landmarks) and then to
compute the edit distance of two lists of predicates. These
differences in computation affect the runtime as can be seen
in Figure 7. The PED is the fastest and APC is about an order
of magnitude faster than R&G and SC, as it does not require
to run a planner for the second time.

Each algorithm has also a different cost for its preprocess-
ing: All algorithms require to find an optimal plan for each
goal. Additional to this, the alternative plan cost variation
requires to extract the set of landmarks for each goal, a pro-

cess that takes more than an order of magnitude longer than
the other algorithms, but is performed offline.

Discussion

This paper presented the use of goal recognition techniques
on attack graphs for intrusion detection. It utilizes a state-of-
the-art goal recognition technique using planning, and then
adds three new variations and techniques to tackles specific
challenges that are interesting in the context of an intrusion
detection system. All of the techniques are evaluated on a
real-world network and simulated attacks.

The empirical results show that all techniques manage to
deal with false negatives and false positives, while having
the highest probability always assigned to the correct goal.
However, there is a clear tradeoff between the algorithms in
terms of sensitivity to FPs, to FNs and time.

The first two presented techniques (R&G and SC) han-
dle missing observations by extrapolating the observation
sequence. This means that they are not susceptible to false
negatives, but at the cost of runtime. The PED and APC tech-
niques do not require to run a planner on the observation se-
quence, thus in real-time the running costs are smaller. The
latter does require the extraction of all possible landmarks,
but it can be performed offline.

This work opens a series of possible extensions. First and
foremost, this work is based on a vision of a complete end-
to-end intrusion detection system, comprised from different
components. It would be interesting to evaluate the perfor-
mance of the recognizers when the observations given are
actual alerts instead of symbolic, processed tokens.
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