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Abstract

Human activity recognition is a crucial ingredient in
safe and efficient human—robot collaboration. In this pa-
per, we present a new model-based approach for on-
line human activity recognition. Our algorithm, called
the logical activity recognition system (LCARS), has
three key points and corresponding strengths. First,
LCARS uses a deterministic high-level human activ-
ity model as its primary knowledge base. This makes
LCARS intuitive and user-friendly because its users
only have to work in a deterministic and high-level do-
main. Second, LCARS automatically compiles the de-
terministic high-level human activity model into a prob-
abilistic model. This makes LCARS robust to sensor
noise. Third, LCARS uses a qualitative map from the
low-level pose (position and orientation) observations
sensed by a robot to the high-level domain, as LCARS
uses the high-level human activity model. Using the
qualitative map makes LCARS complete in the sense
that it can use low-level pose observations directly as
the input, without any additional effort. Experimental
results to support our claims will be provided.

Introduction

Human-robot collaboration is gaining increasing attention.
There are many scenarios where humans and robots need
to collaborate, such as manufacturing and household envi-
ronments. Among many ingredients needed for successful
human-robot collaboration, human activity recognition is
crucial in ensuring safe and effective collaboration. To il-
lustrate this, let us assume a scenario in which a human and
arobot are collaborating to make a wooden chair. In this sce-
nario, a hammer and a drill are in Toolbox A, and a box of
nails is in Toolbox B. If the robot recognizes that the human
is picking up the hammer, it can avoid a collision by not go-
ing to Toolbox A. Instead, it can go to Toolbox B to pick up
the nails for the hammer.

In this paper, we present a new model-based online hu-
man activity recognition algorithm called the logical activity
recognition system (LCARS). LCARS has three inputs: i) a
deterministic high-level human activity model, ii) a qualita-
tive map from the low-level pose observations sensed by a

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

robot to a high-level domain, and iii) noisy online low-level
pose (position and orientation) observations of all the objects
(including the human hand, the hammer, and the drill). To
be robust to the noisy observations, LCARS first automat-
ically compiles the deterministic high-level human activity
model into a probabilistic high-level human activity model
(referred to as the “’probabilistic model” from now on). After
the compilation, LCARS uses the probabilistic model, the
qualitative map, and the noisy online pose observations to
estimate the current human activity online (e.g., “the human
is picking up the hammer”).

For the implementation of LCARS, we use specific frame-
works for the deterministic high-level human activity model,
the probabilistic model, and the qualitative map. First, to en-
code the deterministic high-level human activity model, we
use the planning domain definition language (PDDL), a lan-
guage widely used in activity planning and execution mon-
itoring. (Yordanova 2011; Yordanova, Kruger, and Kirste
2012) have shown that PDDL is a good choice, as it en-
codes how human activity changes the world with determin-
istic preconditions and effects. Second, we design the proba-
bilistic model as a dynamic Bayesian network (DBN). Third,
for the qualitative map, we use qualitative spatial reasoning
(QSR). QSR has proven to be effective in human activity
recognition (Schlenoff et al. 2013; 2015).

The main contribution of our work is combining the three
existing frameworks (i.e., PDDL human behavior model,
QSR, and DBN) to come up with LCARS. The resulting
LCARS has the following strengths. First, it is intuitive and
user-friendly, thanks to its use of a deterministic high-level
human activity model. Second, it is robust due to its use of
a probabilistic model. Third, it is complete in the sense that
it can use low-level pose observations directly as the input,
without any additional effort, thanks to the use of a qualita-
tive map.

This paper is organized as follows. The second section
provides the related works. The third section provides the
formal problem statement and an overview of LCARS.
The fourth section provides a pick-and-place example used
throughout the paper. The background is presented in the
fifth section, with a brief explanations of PDDL, QSR, and
DBNS. A detailed illustration of LCARS is presented in the
sixth section. The seventh section presents the experimental
results. Finally, the paper is concluded in the eighth section.



Related Works

Human activity recognition is a broad and complex research
field that requires modeling for a wide variety of elements.
Many works have tried to address some elements. To name
a few, first, some have modeled a map from low-level pose
input from robot sensors to abstract concepts that humans
think and reason with. This allows researchers to focus on
a higher level and more intuitive domain. (Schlenoff et al.
2013; 2015; Kirste 2011) extracted the high-level concepts
(e.g., predicates such as “the human is holding the hammer”)
for various human activity recognition scenarios from the
low-level pose information using QSR.

Second, some have focused on how to model the human
behavior. As human activity is a high-level abstract concept,
it is reasonable to describe human activity (or behavior) with
high-level languages. (Yordanova 2011) used PDDL to code
the human behavior with preconditions and effects. (Pyna-
dath and Wellman 2000) models the human behavior using
probabilistic state-dependent grammars (PSDGs).

Third, some have focused on how to be robust to noisy
environment. Robots’ sensing capabilities are limited in
many real-world scenarios. Thus, it is helpful to resort to
probabilistic approaches rather than deterministic ones. (Bui
2003) applied DBN for recognizing human activity by track-
ing the trajectory of a human. In (Yordanova, Kruger, and
Kirste 2012), a hidden Markov model (HMM) is extracted
from the human behavior encoded in PDDL.

Our work tries to integrate these separate elements under
one framework. Especially, (Pynadath and Wellman 2000;
Yordanova, Kruger, and Kirste 2012) lack a systematic way
to model the map from low-level input to high-level con-
cepts. In addition, in contrast to (Pynadath and Wellman
2000), we use more general PDDL to model human be-
havior so that LCARS can be integrated to other planning
and execution monitoring works easily. In contrast to (Yor-
danova, Kruger, and Kirste 2012), we automatically synthe-
size a DBN from a PDDL model. DBN is more expressive
compared to HMM, and thus it can express more complex
interactions between state and action variables. The simple
HMM structure in (Yordanova, Kruger, and Kirste 2012) has
a collapsed state variable, without action variables defined
separately. This makes modeling complex actions, such as
durative actions in PDDL 2.1, difficult.

Problem Statement and Solution Overview

The task of human activity recognition is to estimate the ac-
tivities that a human is performing (i.e., pick, place etc.). If
the activity has a temporal duration, such as a durative ac-
tion in PDDL 2.1, we also need to recognize how far we
have progressed in the activity (i.e., ready, executing, fin-
ished, etc.). In this paper, we call this progression the activ-
ity stage. Then, our goal is to estimate human activity and
its stage.

To state the human activity recognition problem more for-
mally, let us assume that the true activity model models how
human activity (and its stage) changes the world. This can
be represented as a function x4 = f(mq., w1:+), where
x1.¢ represents the positions and orientations of objects, m.;

represents the human activity and its stage, and w;.; repre-
sents all possible random aspects of human activities. We
can sense x1.; only through a noisy sensor. The function
01:+ = h(21.t, v1.¢) represents the observation model, where
01:t 1S a noisy observation of objects’ poses, and v is a
sensor noise. Then, the aim of the human activity recogni-
tion problem becomes, first, to model an activity estimation
model, 1y = f~'(01.), which is pseudo-inverse mapping
of the true activity model, and second, to perform an effi-
cient online estimation over the activity estimation model.
Here, m; represents the recognized (or estimated) human
activity and its stage. Figure 1 visualizes the above formal
human activity recognition problem (Heinze 2004).

. Recognized
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Stage (my.¢) Stage (M)

X1 = f(Me Wie) @ ﬁ ity = F 1 (00e)

State — position State observation
and orientation |:>
(0) (01.4)

01 = h(X1:0,V1,0)
Figure 1: Human activity monitoring problem

In this paper, we provide our solution, called LCARS. To
solve the above general human activity recognition problem,
LCARS addresses and combines three elements: 1) Spatial
relations between objects are of great interest. Thus, we use
QSR to map from low-level pose input to PDDL predicates.
ii) Humans act according to a predefined abstract behavior
model given in PDDL. iii) The PDDL model is converted
into DBNs for robustness to noisy (pose) observations. Fig-
ure 2 visualizes the overview of LCARS. In the big picture,
LCARS takes three inputs: online noisy pose observation
of objects at each time step, user-specified definitions over
PDDL predicates in terms of QSR primitives (Table 2), and
PDDL human behavior model (Table 1). LCARS outputs the
online estimation (probability distribution) over the current
human activities and stages, as well as the predicates repre-
senting the state of the world.

LCARS

Noisy pose DBN

observation (online) Observed predicate ﬁ)
User-specified generation Observed
predicate definition predicates

PDDL human
behavior model

(online)

Offline compilation | _ _ _ _
component Autonomously

generated

Filtering (online)

Offline compilation component

- o Probability distribution over
Online estimation component

predicate and activity stage
Figure 2: Graphical representation of LCARS

LCARS has two components: i) the offline compilation
component and ii) the online estimation component. The of-
fline part uses the PDDL human behavior model to gener-
ate the DBN part of the online estimation component of-
fline. The conversion of the PDDL model into the DBN



can be automated for a new PDDL model. The online part
has two subcomponents: i) the observed predicate genera-
tor, which is explained in detail in the sixth section, and ii)
the DBN estimator. The observed predicate generator uses
user-specified PDDL predicate definitions in terms of QSR
primitives, which serve as the mapping from low-level pose
data to abstract PDDL predicates, and online noisy pose ob-
servation as inputs to get the observed predicate online. The
online observed predicates generated at each time step are
used in the DBN estimator to estimate the current human
activities and stages, as well as the predicates online.

In Figure 2, any inputs, outputs, or procedures indicated
as online are provided, obtained, or performed at each time
step. Otherwise, they are only for once.

Pick-and-Place Example

In this paper, we use a pick-and-place example through-
out to help readers understand LCARS. The experimental
results in the seventh section are also based on this exam-
ple. Our pick-and-place example has three actions (or activ-
ities): pick, place, and pass. Although there are only three
action types, they are fundamental actions for many human—
robot collaboration scenarios that can be modified to ex-
press many other actions. We provide part of a pick-and-
place example PDDL code (pick action only) in Table 1.
This example is written in PDDL version 2.1 with durative
actions. Thus, LCARS needs to estimate not only the action
itself but also the activity stage, unlike in (Yordanova 2011;
Yordanova, Kruger, and Kirste 2012).

All the predicates and actions in Table 1 are ungrounded,
meaning that the parameters (7o, [, and 7m) are not spec-
ified. Predicates and actions are called grounded when all
the parameters are specified. For example a predicate (hold-
ing hammer hand) and an action (pick hammer hand
toolbox 4 ) are grounded. All possible values (e.g., hammer,
drill, and so on) for the parameters (e.g., 7o) are specified
in a separate format (omitted here). Note LCARS estimates
over the grounded activities and predicates.

Algorithm Background
Planning Domain Definition Language (PDDL)

PDDL is a predicate-based language widely used in activity
planning and execution monitoring. PDDL describes actions
with preconditions and effects. An example PDDL 2.1 code
is provided in Table 1. For a durative action, a precondition
(or condition) is a predicate statement that must be true to
perform the action, and an effect is a predicate statement that
results in being true from applying the action. An at start
indicates a predicate statement related to the beginning of an
action, and an at end indicates a predicate statement related
to the end. The at start and at end are sometimes referred to
as snap actions. Durative actions progress in the order of at
start precondition, at start effect, at end precondition, and at
end effect. An over all indicates a predicate statement related
to the duration between the start and the end. A graphical
representation of a durative action is shown in Figure 5. A
detailed explanation of PDDL 2.1 is in (Fox and Long 2003).

Table 1: Pick-and-Place Example in PDDL

(define (domain PDDL-domain)
(:requirements :strips :typing :durative-actions)
(:types manipulator object location)
(:predicates
(in ?0 - object ?1 - location)
(clear 70 - object)
(empty ?m - manipulator)
(holding 70 - object ?m - manipulator))
(:durative-action pick
:parameters (?0 - object ?m - manipulator ?I - location)
:duration (= ?duration 20)
:condition (and
(at start (in ?0 ?1)) (at start (clear ?0)) (at start (empty 7m))
(at end (in ?0 ?1)) (at end (not (clear ?0)))
(at end (not (empty 7m))) (at end (holding ?0 ?m))
(over all (in ?0 ?1)) (over all (not (clear ?0)))
(over all (not (empty ?m))) (over all (holding ?0 ?m)))
-effect (and
(at start (not (clear ?0))) (at start (not (empty ?m)))
(at start (holding ?0 ?m)) (at end (not (in 70 1))))))

QSR and RCC-8

QSR (Freksa 1991) abstracts the pose data (positions and
orientations) of objects or regions into qualitative relations
among them for intuitive reasoning. We can represent com-
plex and high-level PDDL predicates through such reason-
ing. RCC (Cohn et al. 1997) is a promising tool for the ab-
straction. In RCC, only a finite number of qualitative rela-
tions are possible for any two given objects or regions. The
number is 5 for RCC-5, 8 for RCC-8, and 23 for RCC-23.
RCC-8 is used in this paper because it is rich enough.

Other human activity recognition works, such as
(Schlenoff et al. 2013; 2015), used a different variant called
RCC-3D to represent 3D ideas of up and down or left and
right. However, RCC-8 is rich enough to represent 3D ideas
as well, and using RCC-3D only complicates the QSR pro-
cess. How RCC-8 can represent 3D ideas and replace RCC-
3D is described in (Lee et al. 2018).

In RCC-8, the finite relations are i) A is disconnected from
B (DC(A, B)), ii) A is edge-connected with B (EC(A, B)),
iii) A is partially occluded by B (PO(A, B)), iv) A is iden-
tical to B (EQ(A, B)), v) and vi) A is a tangentially proper
part of B, or the inverse (TTPP(A, B) or TPPi(A, B)), vii)
and viii) A is a nontangentially proper part of B, or the in-
verse (NTPP(A, B) or NTPPi(A, B)). These relations
are visualized in Figure 3.

DC(A,B) EC(A,B) PO(A,B) EQ(A,B) TPP(A,B) TPPi(A,B) NTPP(A,B) NTPPi(A,B)
Figure 3: RCC-8 primitives

Given two closed regular regions A and B in R? space,
we can acquire an RCC-8 relation using a collision detec-
tion algorithm. Collision detection has been a well-studied



field with many efficient algorithms (Ericson 2004). Thus,
we can find the RCC-8 primitive statement very efficiently.
How to obtain the RCC-8 primitives using a collision detec-
tion algorithm is described in (Lee et al. 2018).

Dynamic Bayesian Networks (DBNs)

A DBN is a directed probabilistic graphical model (Mur-
phy 2002). It is very similar to a Bayesian network (BN) ex-
cept that the DBN is used to model a discrete-time stochastic
process. An HMM, a popular modeling method for discrete-
time stochastic processes, is an instance of a DBN. Let us as-
sume Z; is a collection of random variables of a DBN at time
t. Then, a DBN is defined to be a pair, (B1, B_,), where B
is a BN that defines the prior P(Z7), and B_, is a two-slice
temporal BN (2TBN) that defines P(Z; | Z;—1) by means
of a directed acyclic graph (DAG). The nodes of the DAG
represent random variables, and the edges of the DAG rep-
resent the conditional probability distribution (CPD). Note
Z; can be partitioned into Z; = (X;, O;), where X is the
collection of hidden random variables, and O is the collec-
tion of observation variables. An example DBN is shown
in Figure 4. In Figure 4, the hidden variables are colored
white, and the observation variables are colored gray. Di-
rected edges represent the CPD by means of DAG.

The inference on a DBN is very similar to the inference
on a BN. In this paper, we perform online filtering over the
generated DBN using online observations. There are several
exact inference algorithms, such as frontier algorithm, junc-
tion tree algorithm, and so on. For an approximate inference,
the particle filter algorithm is widely used. A detailed expla-
nation of the DBN and its inference is omitted here and can
be found in (Murphy 2002).

Logical Activity Recognition System (LCARS)

LCARS has two components: i) an offline compilation com-
ponent and ii) an online estimation component. In this sec-
tion, we explain the two components.

Offline Compilation Component

In the offline compilation, the high-level human behavior
model in PDDL is taken in as the input to generate the
DBN offline. The DBN is used in the online estimation. In
this subsection, our unique DBN modeling methodology for
converting the PDDL human behavior model is presented.
To be more specific, we specify how to obtain all the random
variables (represented as nodes) and CPDs (represented as
edges) for the DBN from the PDDL human behavior model.
Our DBN modeling has i) three types of random variables
and ii) three types of CPDs. We explain our DBN design
with the pick-and-place example. The DBN for the pick-
and-place example is provided in Figure 4.

Let us first go over the three types of random variables,
corresponding to three levels of nodes in the LCARS’ DBN
design in Figure 4. The level 1 layer is for observed predi-
cate variables (predgbs), which are formed in parallel to each
other. An observed predicate variable (predg’ff) is formed

for every grounded predicate in PDDL. pred?®* represents

(place block,.q hand location,);.1
\V-(pick block,¢4 hand locationg),,
(pick block,.q hand locationy), .

Level 3
Activity / stage
/(‘m block,q locationg)tidden

(011 block,.q location)hidden
~(empty hand)!idden
) —(on blockyeq locationg)?jerved
) ~wblockred location,)?b5erved

observed

(empty hand)?%;

Level 2
Hidden predicate

Level 1
Observed predicate

Figure 4: DBN modeling for the pick-and-place experiment
in the seventh section. Only a small portion is shown here.

the collection of all the parallel observed predicate vari-
ables, whereas pred(’bs represents the ith observed predicate
variable in the collection. The observed predicate variables
represent the noisy predicates obtained from the observed
predicate generator using the noisy pose observation. The
observed predicate generator is explained in the next sub-
section. The observed predicate variables are the observa-
tion variables (O,) in the DBN and colored gray in Figure 4.
The level 2 layer is for hidden predicate variables (pred!),
which are formed in parallel to each other. A hidden pred-
icate variable (predh ) is formed for every grounded pred-
icate as well. The hidden predicate variables represent the
world truth predicates, whereas the observed predicate vari-
ables in level 1 do not. The observed predicate variables and
the hidden predicate variables have two possible states, True
and False. The level 3 layer is for activity variables (acty),
which are also formed in parallel to each other. An activity
variable (act; ;) is generated for every grounded (durative)
action in PDDL. The activity variables are to tell the hu-
man activity and its stage. Activity variables have six pos-
sible states, representing the activity stages. They are Nil,
Ready, Executing, Almost, Finished, and Failed. The Nil
stage means the at start precondition of a grounded action
has not been satisfied yet. This means the action not only has
not been initiated but also has not even been prepared for ini-
tiation. The Ready stage means the at start precondition has
been satisfied. This means the action is ready to be initiated.
Executing means the at start effect has been achieved. This
means the action has been initiated. Almost means the at end
precondition has been satisfied. This means the precondition
to finish the action has been satisfied. Finished means the
at end effect has been achieved. This means the action has
been finished. Failed means the action has been failed. The
six stages of an action variable are graphically represented
in Figure 5.

For example, let us assume (empty hand)? = True and
(holding hammer hand)? = False for the two hidden
predicate variables, and (pick hammer hand toolbox 4); =
Ready and (place hammer hand toolbox 4); = Nil for
the two activity variables. This means the hand is empty
and not holding hammer at time ¢. In addition, the hand
has satisfied the at start precondition for the pick action and
is ready for picking up hammer from toolbox 4, while the
hand has not satisfied the precondition for the place action
and is not ready for placing hammer on toolbox 4 at time t.
Note, we implicitly assumed that multiple actions can be in
the Executing stage in the DBN model through a set of par-
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Figure 5: A diagram of temporal progression of a PDDL du-
rative action (bottom) and a diagram of how the temporal
progression corresponds to the activity stages (top)

allel activity variables. This means that humans can perform
multiple actions at the same time, and LCARS can estimate
all those multiple actions.

Next, let us go over the three types of CPDs in the
LCARS’ DBN. Three types of CPDs are represented in Fig-
ure 4 with colored directed edges (red, green, and orange).
A red edge represents an observation model between an ob-
served predicate variable and a hidden predicate variable
(P(pred?® | pred!.)). The observation models are two-by-
two matrices. A set of green edges represents a state transi-
tion model for a hidden predicate variable (a CPD of form
P(pred},, ; | pred};, acty)). It is formed for every hidden
predicate variable. A set of orange edges represents a state
transition model for an activity variable (a CPD P(act;41
| acty ;, pred? ' 1))- It is formed for every activity variable.

Let us go over the state transition models for green edges
and orange edges in more detail. For the green edges, let
us consider the state transition model of an example hidden
predicate (empty hand). Figure 6(a) shows the state tran-
sition model. The state transition is possible only when a
specific condition has been met. For example, the (empty
hand) experiences T'rue — False when (pick hammer
hand toolbox 4) action’s at start snap action happens. This,
in turn, means that the predicate’s state transition can happen
when the action is in the Ready stage. This is because the at
start snap action can happen when the action is in the Ready
stage, as shown in Figure 5. This condition can be modeled
as a guard condition Gp_, p, indicated along the transition
arrow in Figure 6(a). The guard condition in this example
would be “(pick hammer hand toolbox 4) in the Ready
stage.” Because there can be many other grounded actions
that can make the (empty hand) predicate change, these ac-
tions should also be included in the guard conditions through
disjunctive statements. This justifies the CPD of green edges
being given as P(pred},, ; | pred},, acty), because the
state transition of a hidden predicate variable should depend
on the activity variables. For the orange edges, let us con-
sider the state transition model of an example action (pick
hammer hand toolbozx 4 ). Figure 7 shows the state transi-
tion model. The state transition model in Figure 7 is modi-
fied from the one in (Wang and Williams 2015), where the
concept of temporal stages for a grounded durative action in
PDDL was introduced. By the definition, the pick action ex-
periences the stage transition Nil — Ready when the at start
precondition is satisfied. That is, (act; ; in Nil) N (at start

precondition satisfied at time ¢ + 1) — (act;+1,; in Ready).
This is represented as a guard condition between Nil and
Ready in Figure 7. Figure 7 shows the guard conditions for
all possible activity stage transitions.

(empty hand)"dden predicate y/ N\
Gror ¢
L regiony(B)
Easy (o) . 4
GT~>F V ~

Gp_r, Gr_p : Guard conditions

(a) Hidden predicate transition
model (self transitions omittied)

(b) A, B, and regione, (B)

Figure 6: The predicate transition model and region,, (B)

(pick block,.q hand location,) action

Automatic after n time steps

(at end (

Nil Ready
(at start (at start
precondition) effect)

at end
precondition) effect)

= (over all

¢ )

A ic after
n time steps

Figure 7: State transition model for activity stages (self tran-
sitions omittied)

The state transition models for other activity variables
have the same structure as in Figure 7, except for the guard
conditions. We need to write in the appropriate guard condi-
tions that correspond to preconditions and effects in PDDL
code. As they are explicit in the PDDL code, the process
is very simple. The state transition models for other hidden
predicate variables also have the same structure as in Fig-
ure 6(a), except for the guard conditions. The guard condi-
tions, Gr_ r and Gp_, 7, are not explicit in this case, how-
ever. How to obtain the guard conditions is provided in Al-
gorithm 1, for the jth hidden predicate variable pred”.

We would like to reemphasize that the generation of the
DBN part of LCARS from a PDDL model can be auto-
mated. For a new PDDL, we first generate all the variables
for grounded predicates and actions. Second, we formulate
the observation models between the observed predicate vari-
ables and the hidden predicate variables. Third, we formu-
late the state transition models for the hidden predicate vari-
ables and the activity variables. Here, we need to modify the
guard conditions appropriately in Figure 6(a) and Figure 7
for different state transition models. This process is repeti-
tive and can be automated.

As a final remark, we have not discussed how to obtain the
numeric probability values for the observation models and
the state transition models, after we found all the guard con-
ditions. The observation probabilities and transition prob-
abilities should be learned from a training dataset. This is



Algorithm 1: How to obtain the guard conditions for
a hidden predicate variable pred); from PDDL

Data: PDDL human behavior model
Result: Guard conditions for pred? (Gr—r and Gp_7)
initialization: Gr— r = nil and Gp_7 = nil ;
for act; € {all PDDL grounded actions} do
switch do
case pred;’ becomes T'rue in at start effect do
| Gror < Gror V (act; in Ready stage);
case predéL becomes False in at start effect do
‘ Gror < Grr V (act; in Ready stage);

case pred? becomes T'rue in at end effect do

‘ Gror + Gror V (act; in Almost stage);
case pred;L becomes False in at end effect do

| Gror < GrorV (act; in Almost stage);

omitted here, since it is not our focus. We can apply various
existing parameter learning algorithms to obtain the numeric
probabilities. Note, learning the parameters is going to be
much faster with guard conditions precomputed, compared
to learning the parameters without precomputing guard con-
ditions. This is because the gaurd conditions set transition
probability parameters to O for many impossible cases.

Online Estimation Component

In the online estimation, LCARS estimates the probability
distributions over the activity stages and predicates. The in-
puts for the LCARS’ online estimation are i) user-specified
PDDL predicate definitions and ii) online noisy pose obser-
vation of all the objects. The online estimation component
has two subcomponents: i) the observed predicate generator
and ii) the DBN estimator.

Observed Predicate Generator The observed predicate
generator serves as a bridge between the online noisy pose
observation from a robot’s low-level sensors and the ob-
served predicate variables, which are observation variables
of the LCARS’ DBN. The DBN generated from the offline
compilation does not include the online noisy pose observa-
tion directly. The online pose observations are included indi-
rectly through the observed predicate variables, which rep-
resent PDDL predicates. Thus, we convert the pose observa-
tion into PDDL predicates online using the observed pred-
icate generator. The generated PDDL predicates are then
used for the observation variables in the online DBN filter-
ing. Because the online pose observation is noisy, the ac-
quired PDDL predicates from the observed predicate gen-
erator are noisy as well, meaning they might not be cor-
rect compared to the ground truth. This is why we named
them observed predicates and distinguished them from hid-
den predicates. We resort to the DBN estimator to handle
the noisy observed predicates.

In summary, the observed predicate generator takes in the
user-specified PDDL predicate definitions (once) and the on-
line noisy pose observation of objects (at each time step) as
inputs to generate the observed predicates online. The on-
line observed predicates (at each time step) are then used in

the DBN estimator. The operation diagram for the observed
predicate generator is provided in Figure 8 with an example.

Observed predicate generator

User-specified
predicate
definitions (Table 2)| RCC-8 pnm|t|ve

Observed PDDL
predicates
(online)

PDDL predicate

Noisy pose generation

data (online) primitives
algorithm (online)
Ex)
pose(hand) DC(hand, blockyeq) (empty hand)

pose(block,.q) DC(hand, blockyeq) (on block,.4locationy,)
pose(blockpy,,) =—> DC(hand, blockyy,) =—> (not (holding block,,,ue hand))
pose(bluckgmm) EC(blockmi locationy)

pose(location,)

Figure 8: Observed predicate generator operation diagram

From the online noisy pose observation of objects, we can
get the RCC-8 primitives online using a collision detection
algorithm, as explained in the fifth section. The resulting on-
line RCC-8 primitives can then be used to get PDDL pred-
icates online based on the provided user-specified PDDL
predicate definitions. The user-specified PDDL predicate
definitions define all the PDDL predicates in terms of RCC-
8 primitives. The exemplary definitions are provided in Ta-
ble 2. We directly apply these logical statements to the on-
line RCC-8 primitives to get PDDL predicates. As we are
using qualitative relations, the definitions are much more in-
tuitive compared to using the pose data directly. More defi-
nitions can be found in (Vieu 1993).

Table 2: Some PDDL Predicate Definitions Using RCC-8

Predicates Primitive representation
(in A B) NTPP(A,B)V TPP(A, B)
(holding hand A) —(DC hand A)
(empty hand) Yobj, (DC A obj)
EC(A, B) A (in Aregionon(B))
(on A B) where regionon (B)) is shown in Figure 6(b)

DBN Estimator The DBN estimator performs the online
filtering estimation over the DBN model constructed in the
offline compilation. The estimator uses the online observed
predicates (at each time step), the online output from the
observed predicate generator, as the observations for the on-
line DBN filtering. The estimator outputs the probability dis-
tributions over activity stages and predicates (at each time
step). To be more specific, the probability distributions of
the hidden predicate variables and the activity variables in
the DBN are the outputs of the DBN estimator. Many DBN
filtering algorithms can be applied. We applied particle filter
for the experimental results for the computational purposes.

Experimental Results

We performed an experiment using the PDDL in Table 1.
Figure 9 shows the experiment environment. For a prac-
tical purpose, we used three blocks instead of three tools
(block,cq for the hammer, blocky,. for the drill, and
blockg,cen for the nails). We used two locations (toolbox 4
and toolbox g), and two manipulators (a human hand and a



robot manipulator). We estimated over 13 grounded predi-
cates (6 for on, 3 for clear, 1 for empty, and 3 for holding)
and 15 grounded activities (6 for pick, 6 for pick, and 3 for
passing).

Figure 9: Experimental environment

We used a Vicon system to measure the position (global
X, y, and z coordinates for the center of mass) and the orien-
tation (helical X, y, and z coordinates) of each object online,
while a person performed a series of actions. As the Vicon
system is very accurate, we included random white Gaus-
sian noise. For position, we added zero mean noise with the
covariance of 400 x I35 (mm?). For orientation, the covari-
ance was 0.01 x I3y 3 (rad?). Here, I3y 3 is the 3 x 3 identity
matrix. Note that the length of the blocks’ sides ranged from
70 mm to 200 mm, so the added noise was relatively sig-
nificant. Then, LCARS estimated over the human activities
and predicates using the online noisy pose observations. The
pose measurement was performed for about 100 seconds, re-
ceiving 9,848 sequential observations.

At each time step, we calculated the most likely states
for all the activities and predicates (hidden predicates) on-
line. If we got all correctly compared to the ground truth,
we assumed we got correct recognition at that time step.
Ground truth was collected separately while collecting the
noisy pose observations. We calculated the accuracy rate of
our correct recognition out of the total number of time steps.
For instance, if we got correct recognition for 8,000 time
steps out of the total of 9,848 time steps, the accuracy rate
would be 8,000/9,848x100 ~ 81.23%. When we applied
LCARS, the accuracy rate was 83.37%. To be more specific,
it was 92.28% for correctly recognizing all the predicates
only and 85.83% for correctly recognizing all the activity
stages only. The results are summarized in Table 3.

Table 3: LCARS Accuracy Rates

LCARS HMM
Case
accuracy rate | accuracy rate
All predicates only 92.28% 62.37%
All activity stages only 85.83% 63.33%
All predicates and activity stages 83.37% 55.92%

To illustrate the robustness of the LCARS’ DBN estima-
tor, we also calculated the predicate accuracy rate using the
observed predicates as the estimate. The observed predicates

are the outputs from the observed predicate generator and
also the observations for the DBN filtering, as it was illus-
trated above. The observation predicates are full of noise. On
the contrary, the hidden predicates that the LCARS’ DBN
estimator outputs are much more accurate. By comparing
the accuracy rates with the observed predicates and the hid-
den predicates, we can show the robustness of our method.
With the observed predicates, the accuracy rate of correctly
recognizing all the predicates was 21.66%. From Table 3, it
was 92.28% with the hidden predicates. The comparison is
summarized in Table 4. Table 4 also compares the accuracy
rate of correctly recognizing each individual predicate.

Table 4: Comparison of Accuracy Rates for Predicates

. The observed The l!ldden HMM
Predicates redicates predicates accuracy rate
P (LCARS) y
(empty hand) 76.45% 98.20% 92.52%
(in block,eq toolbox 4) 51.26% 95.83% 90.65%
(holding block,cq hand) 69.48% 97.75% 89.17%
(clear blockyca) 71.36% 97.26% 92.40%
All predicates altogether 21.66% 92.28% 62.37%

We also compared LCARS with an HMM-based method.
We designed an independent HMM for each grounded predi-
cate to get the HMM estimates of all the grounded predicates
and actions, using the observed predicates as the online ob-
servations. The results for the HMMs are shown in Table 3
and Table 4. We can see that the accuracy rate from LCARS
is higher. This means that LCARS captures the complex in-
teractions between predicates and actions well, compared to
simple HMM-based methods.

Conclusions

This paper presents LCARS algorithm for robust online hu-
man activity recognition. Our solution combines three el-
ements: i) smart mapping from low-level pose data to ab-
stract PDDL predicates using QSR, ii) efficient modeling of
abstract human behavior using PDDL, and iii) a robust prob-
abilistic model using DBN. LCARS has two components: 1)
the offline compilation component and ii) the online estima-
tion component. The offline part automatically generates the
online DBN part using a PDDL human behavior model. The
online part has two subcomponents: i) the observed predi-
cate generator and ii) the DBN estimator. The observed pred-
icate generator takes in the user-specified PDDL predicate
definition in QSR primitives and online noisy pose obser-
vation as inputs and outputs the observed predicates online.
The observed predicates are used in the DBN estimator’s
online filtering to find the estimate over the human activity
stages and predicates.

Future efforts will focus on applying LCARS to various
environments with noisy sensors. For example, cameras with
neural network-based object detection algorithms are widely
used today. In such cases, an interesting scenario is when
the online pose observations of some objects are blocked for
some amount of time. We expect LCARS to be robust to
such cases as well.
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