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Abstract

Plan recognition is the problem of observing the effects of
actions performed by a person or an artificial agent to in-
fer his intent or most likely goals, and predict his course of
action. Deep learning has recently been making significant
inroads on various pattern recognition problems, except for
plan recognition. Most of the current research efforts to plan
recognition in the literature are indeed mainly based on sym-
bolic inference algorithms, which use handcrafted models.
One of these approaches, intensely studied, is symbolic in-
verse planning. This paper compares symbolic inverse plan-
ning to deep learning on five synthetic benchmarks often used
for comparing symbolic plan recognizers. While preliminary,
the results show that the deep learning approach achieves bet-
ter goal-prediction accuracy and timeliness than the symbolic
inverse planner in these domains. This experiment is the first
step in a broader research effort to investigate deep-learning
approaches to plan recognition.

Introduction
Deep learning has recently made amazing inroads in under-
standing human behaviors. Using binary sensors, deep learn-
ing begins to show promising results in the early detection
of dementia in the elderly population (Almeida and Azkune
2018). Computer vision learning algorithms can now distin-
guish between hundreds of human motor actions based on
images (Yan et al. 2016), while video analysis algorithms
are starting to understand simple human activities involving
time and space constraints, such as talking, drumming, sky-
diving, or walking (Simonyan and Zisserman 2014; Hou et
al. 2018). Such applications are able to recognize individual
actions, but they are not geared towards recognizing goal-
directed sequences of such actions, that is, plans.

Inferring the goal or intention of other agents, and predict-
ing their course of action is known as the plan recognition
problem. This problem still presents a tremendous challenge
for artificial intelligence (AI) research. To understand the
importance of this problem in AI, it is important to remind
that in many contexts, human behaviors are indeed driven
by strategic action and activity choices. That is, our behav-
ior is often the result of cognitive planning processes, even
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though we are not often conscious of it (Schmidt, Sridha-
ran, and Goodson 1978; Baker, Saxe, and Tenenbaum 2009).
Autonomous vehicles could benefit from plan recognition to
better predict the behaviors of pedestrians. Video game AI,
security assessment bots and many more applications could
benefit from plan recognition capabilities.

Most to date research in plan recognition uses symbolic
inference algorithms, which rely on handcrafted models, un-
like the action recognition approaches which have largely
shifted to using machine learning approaches, deep learn-
ing in particular. Yet, handcrafted models have so far proven
difficult to use in real-world practical applications. One key
reason is simply the difficulty to model abstractions that rep-
resent real-world situations with a fidelity sufficient for the
inference method used for plan recognition. Defining effi-
cient inference methods is another related challenge.

The success of deep neural networks in learning complex
abstractions from multi-dimensional data prompted us to in-
vestigate their use for plan recognition. We discuss prelimi-
nary results comparing symbolic inverse planning (Ramı́rez
and Geffner 2010; Masters and Sardiña 2017) against se-
lected architectures of deep neural networks on five differ-
ent synthetic domains commonly used as benchmarks for
symbolic plan recognizers. We consider the case of one plan
recognizer inferring the goal of an observed agent. The ob-
served agent has no interest in impeding nor assisting the
plan recognition process. This is also known as the keyhole
plan recognition problem by analogy to a person observing
another in a different room, through a keyhole, and trying to
infer his goals.

While preliminary, the results show that the neural net-
works achieve better goal-prediction accuracy and timeli-
ness than the symbolic inverse planner in all the five do-
mains. It seems that even a simple fully connected network
is able to learn abstractions underlying sequential decisions
conveyed in the observed patterns of a goal-directed agent
enough to outperform an inverted planner. Before the ex-
periment, we expected the inverted planner to perform bet-
ter since it is inherently tailored to generate sequential de-
cisions. This raises interesting avenues of investigation that
we discuss in the paper.

The rest of the paper is organized as follows: first, we
briefly review the most related work. Second, we give back-
ground on plan recognition and deep learning necessary to



follow the methodology used for the experiments. Then, we
present our methodology, including the benchmarks used.
We finally discuss on the experiment results followed by a
conclusion including avenues of future research.

Related Work

A few approaches combine deep learning and symbolic in-
ference in different ways. For example, (Granada et al. 2017)
use a deep learning network to recognize individual actions
of an actor cooking recipes in a kitchen, and then use a sym-
bolic algorithm, SBR, to infer the goal underlying an ob-
served sequence of actions. This approach requires as input
the sequence of actions recognized by the neural network
and a handcrafted model (plan library) representing abstrac-
tions of potential plans the observed agent could execute.
There is no mechanism allowing the handcrafted plan library
to adapt its own abstractions to classification errors of the
neural network recognizing individual actions.

The approach in (Bisson, Larochelle, and Kabanza 2015)
also uses a symbolic inference algorithm, which requires as
input a sequence of observations of actions performed by
an agent and a plan library. Like the SBR algorithm in the
approach above, the plan library represents abstractions of
potential plans the observed agent could execute. One com-
ponent of the plan library representation is a probabilistic
model of the choices the observed agent could make when
selecting and executing plans from the plan library. A neural
network learns this probabilistic model whereas the rest of
the plan library is handcrafted.

In both approaches, goal inferences or plan predictions
are done by a symbolic inference engine, not a deep neu-
ral network. Deep learning is involved only as an auxiliary
procedure either to scan individual actions (Granada et al.
2017), or to learn a probabilistic model (Bisson, Larochelle,
and Kabanza 2015). In contrast, in the experiments we dis-
cuss herein, a neural network does all the inference.

To the best of our knowledge, the approach in (Min et al.
2014) is among the earliest to use a plan recognition pipeline
only made of a neural network. They use feed-forward n-
gram to learn the player’s objective from a sequence of his
actions in the CRYSTAL ISLAND game. The follow-up ap-
proach in (Min et al. 2016) uses Long Short-Term Mem-
ory (LSTM) networks, better suited to learn long short-term
patterns in sequences. In both approaches, the features fed to
the neural network were handcrafted instead of merely being
raw player’s events such as mouse clicks and key presses.
While these approaches demonstrate interesting results in a
specific domain, they do not include a systematic compari-
son to symbolic approaches.

Thus, although deep learning has started to be investi-
gated for plan recognition in different approaches, we are
not aware of any systematic comparison using a complete
deep-learning pipeline for plan recognition versus using a
symbolic approach or a hybrid approach like those discussed
above. In particular, we are not aware of any comparison
between neural networks and symbolic inverse planning,
which is the experiment specifically discussed herein.

Background
Before discussing the experiment, let us first go through the
background necessary to understand the two approaches we
compared: the plan recognition problem, deep neural net-
works, and inverse planning.

The Problem
The plan recognition problem is to infer the goal pursued
by an actor from an observed sequence of effects of his ac-
tions, and also to extract the plan pursued by the actor from
these observations (Schmidt, Sridharan, and Goodson 1978).
There is a link between goals, plans and intention. A plan is a
sequence of actions achieving a goal, whereas an intention is
a commitment to execute a plan. It could be argued that from
a plan one can infer the likelihood of goals and vice-versa.
Thus, in the AI literature, plan recognition has come to en-
compass all problems related to understanding goal-oriented
behaviors, whether the focus is on goal inference, intention
inference, plan prediction, or a combination of those three.
The preliminary experiments discussed in this paper concern
only inferring the goal.

Definition 1. A plan recognition problem is a tuple 〈G, oπ〉
where G is the set of possible goals of an actor and oπ is a
sequence of observations of the effects of the agent’s actions.

A solution to a plan recognition problem is a posterior
probability distribution across G, P (G|oπ). The optimal so-
lution is the one where P (g|oπ) is maximal for the true goal
g ∈ G of the observed agent.

A plan recognition problem is also a pattern recognition
problem, but not vice-versa. The aim is to predict the true
goal of an actor only from a pattern of observations where
each observation is the effect of some action executed by
the actor. That is, the sequence of observations represents
the actor’s behaviors as perceived by the plan recognizer.

Deep Learning
In order to follow the methodology used for the experiments,
it is useful to have some background on deep neural net-
works.

Given a set of sequences of observations O and a set of
potential goalsG, let us assume that there exists a true recog-
nition function f that maps perfectly each oπ ∈ O to its true
goal goπ ∈ G, that is, f(oπ) = goπ .

While f is unknown (this is what we want to infer), we
assume we have access to a training dataset of paired ex-
amples (oπ, goπ ), i.e. we know the true goal goπ for some
oπ ∈ O. A supervised learning algorithm will seek to ap-
proximate f with a function f ′ parametrized by some set of
parameters θ that minimizes the number of erred predictions
in our dataset of examples. In other words, f ′ minimizes

L =

N∑
n=0

l(f ′(onπ; θ), gonπ )

where l is a loss function that is 0 when f ′ predicts accu-
rately, and > 0 otherwise.



A single-layer neural network uses a simple linear trans-
formation of the input using weight and bias parameters fol-
lowed by a non-linear function in place of f ′:

f ′(oπ) = γ(Woπ + b)

where W and b are the weight and bias parameters, re-
spectively, and γ is a non-linear function such as sigmoid,
hyperbolic tangent (tanh), rectifier linear units (ReLU), soft-
max, etc. A (deep) neural network is a composition of sev-
eral of these transformations, usually with a different set of
parameters at each layer (Goodfellow, Bengio, and Courville
2016). These parameters are trained in order to converge to
the minimum of the objective, usually by gradient descent
of the loss function, and updated at each training step by the
rule:

W ←W − α∇W

b← b− α∇b

where α is the learning rate, a scalar tuned by hand by
the developer. Specialized types of networks, who include
variation in the way data is transformed, can prove more
useful for plan recognition problems in general, particularly
navigation problems. For instance, convolutional neural net-
works (CNNs) use filters of parameters and the convolution
operation to process the input:

hi′,j′ = γ(W ∗ o) = γ

M,N∑
i,j=0

Wi,joi′−i,j′−j

where * is the convolution operation, M and N is the
height and width of the matrix W, also called kernel, o is
an observation where spatial structure is preserved (in case
of grid-type input for example), γ is the activation function
and hi′,j′ is one of the unit of the generated matrix h, also
called feature map. CNNs thus limit greatly the number of
trained parameters through parameter sharing or local con-
nectivity and learn efficiently on spatial information such as
images or grid-worlds type of data.

Recurrent neural networks (RNNs), as opposed to feed-
forward neural networks, process each element of the se-
quence individually. Furthermore, the previous state of the
network is fed back to compute the next state:

ht = γ(Wot + Uht−1 + b)

where ot is the tth observation of the sequence oπ , ht−1
is the previous state, and W , U and b are matrices and vec-
tor of trainable parameters. Parameter sharing for input pro-
cessing and network state processing favors learning over
the content of each element and the order of the elements of
the sequence, rather than the position of the element, which
would be the case in a typical feed-forward fully connected
network. This is particularly useful when treating sequences
of observations.

Long Short-Term Memory networks (LSTM) used by
(Min et al. 2016) is an improvement of RNNs that allows
for better gradient propagation and thus shows better learn-
ing results than RNNs on longer sequences.
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Figure 1: A navigation grid example, where the agent is con-
strained with obstacles.

Symbolic Inverse Planning
The intuition behind inverse planning is the principle of ra-
tionality: people tend to act optimally to the best of their
knowledge (Baker, Saxe, and Tenenbaum 2009). Under this
assumption, the most logical approach to solve a plan recog-
nition problem is to reason from the observed agent’s point
of view, that is to compute plans for his possible goals. In
this line of thinking, inverse planning algorithms compare
the costs of the found plans π to infer the posterior prob-
ability distribution. Let us look for example at the grid-
world depicted in figure 1. From the observation sequence,
the agent’s logical goal is unlikely G1, since we can find a
shorter path from its start state to G1 other than the one it
is currently taking. Thus, let us define the likelihood of an
observation sequence oπ to reach a goal g to be:

P (oπ|g) =
e−βcostdif (s,g,oπ)

1 + e−βcostdif (s,g,oπ)

where β is a positive constant determining how optimal
we assess the observed agent’s behaviour to be.

From this, we can derive the posterior probability of the
goal using the Bayes rule: P (g|oπ) = αP (oπ|g)P (g)∀g ∈
G, where P (g) is the prior probability (often assumed to be
uniform) and α is a normalization factor. costdif is a func-
tion that compares the costs of plans that solves the plan-
ning problem for start state s and goal state g. (Ramı́rez and
Geffner 2010) defines it to be:

costdif (s, g, oπ) = c(s, g, oπ)− c(s, g,¬oπ)

where c(s, g, oπ) is the cost of the optimal plan πo be-
tween s and g that complies with the observations (i.e. all
observed actions of oπ are embedded monotonically in the
plan) and c(s, g,¬oπ) is the cost of the optimal plan π¬o that
does not comply with the observations (oπ is not embedded
in π). (Masters and Sardiña 2017) simplifies the formula for
navigation domains by noticing first that in most cases, the
cost of the plan ignoring the observations naturally does not
comply with the observations, and second, that the cost of
πo from the start s up to the corresponding state n of the
last observation is constant among all goal plans, and is not
a useful information to discriminate the goals. Here is the
simplified formula:



costdif (s, g, n) = c(n, g)− c(s, g)

In this approach, the key is being able to compute plan
costs. Symbolic inverse plan recognizers use a symbolic
planner to compute plan costs (Ramı́rez and Geffner 2010).
The symbolic planner requires as input models handcrafted
by human experts. Such models convey knowledge abstrac-
tions about the environment, the possible primitive actions
that the observed agent is capable of doing and heuristics.
Depending on the symbolic planning algorithm used, heuris-
tics can be handcrafted or extracted automatically by the
planner from the models of primitive actions.

In the inverse planning approach as described above,
the planner needs to be run twice for each goal consid-
ered. Computing a plan, even in the simple case of a
deterministic environment under full observability, is NP-
Complete (Cooper 1990). This makes it hard to apply in-
verse planning in situations where an agent needs to infer
the intention of others quickly, almost instantaneously, as is
the case when people interact with each other.

The approach was described above assuming a compu-
tation of optimal costs. As noted by (Ramı́rez and Geffner
2009), approximate, suboptimal costs can be used instead.
The benefit is that, in many cases, planning algorithms that
compute suboptimal plans run faster than those computing
optimal plans. When a suboptimal planner is used, the com-
puted goal probability distribution is an approximation of
the correct distribution. This can be helpful in situations
where what is most important is to identify the most likely
goals, not necessarily their accurate probabilities.

While an improvement in runtime complexity, even
heuristic planners which compute suboptimal plans still take
too much time. They cannot support real-time plan recogni-
tion in high-tempo situations. A more efficient approach is
to pre-compute the plan costs offline. This way, instead of
invoking a planner, we have a lookup in a table or a map
of plan costs. The problem is that, for a general planning
domain, there is no well-known method of accurately pre-
computing and storing plan costs for all possible combi-
nations of initial and goal states. This remains an interest-
ing research challenge. Various recent studies present dif-
ferent ideas that can lead to pre-computing approximate
costs useable in inverse planning (Freedman et al. 2018;
E.-Martı́n, R.-Moreno, and Smith 2015; Pereira, Oren, and
Meneguzzi 2017; Vered and Kaminka 2017). With approx-
imate costs, the plan recognizer may not produce accurate
goal probability distributions but, like in the case of using a
heuristic planner (Ramı́rez and Geffner 2009), we can hope
for an approximate enough distribution to rank goals accu-
rately. For navigation problems, where the issue is to pre-
dict the destination of an agent moving around, (Masters and
Sardiña 2017) describes an approach for accurately precom-
puting plan costs.

Comparison Methodology
We can now present the benchmarks used for comparing
deep neural networks and symbolic inverse planning, fol-

lowed by the design of the neural network and the imple-
mentation of the inverse planner.

Benchmarks

The comparison was made on five domains, using synthetic
data:

1. NAVIGATION: Predicting the goal destination of an agent
navigating a map (Masters and Sardiña 2017). The do-
main consists of 20 maps from StarCraft, provided by the
MovingAI website1, downscaled to 64x64 pixels, where
the agent can perform actions limited to the discrete set of
cardinal directions (North, South, East and West). A plan
recognition problem consists in predicting the goal desti-
nation of an agent given a sequence of observed moves.
Plan recognition problems were generated by placing one
initial position and 5 goals on the maps.

2. INTRUSION DETECTION: Predicting the goals of net-
work hackers with their activities (Geib and Goldman
2002). The observed agent is a user who may perform
attacks on 10 hosts. There are 6 possible goals that the
hacker might reach by performing 9 actions (recon, info-
gathering, break-into, modify-files, clean, vandalize, gain-
root, download-files and steal-data) on those servers. Ob-
servation sequences are approximately between 8 and 14
observations long.

3. KITCHEN: Inferring the activity of a cook in a smart
home kitchen (Wu et al. 2007). The cook can either pre-
pare breakfast, lunch or dinner (possible goals) (Wu et al.
2007). He can take objects, use them, and perform nu-
merous high-level activities. Observation sequences are
approximately between 3 and 8 actions long.

4. BLOCKSWORLD: Predicting the goal of an agent assem-
bling 8 blocks labeled with letters, arranged randomly at
the beginning (Ramı́rez and Geffner 2009). Achieving a
goal consists in ordering blocks into a single tower to spell
one of the 21 possible words by the use of 4 actions (pick-
up, put-down, stack and unstack). Observation sequences
are approximately between 6 and 10 actions long.

5. LOGISTICS: Predicting package delivery in a transport
domain. Six packages must be conveyed between 6 loca-
tions in 2 different cities, using 1 airplane, 2 airports and 2
trucks (Ramı́rez and Geffner 2009). There are 6 possible
actions available (load-truck, load-airplane, unload-truck,
unload-airplane, drive-truck and fly-airplane) to achieve
around 10 possible goals. Observation sequences are ap-
proximately between 16 and 22 actions long.

Those domains are among the benchmarks traditionally
used for planning algorithms and are also often selected for
evaluating the performance of a symbolic plan recognizer
as referenced above. Ultimately, we want to evaluate plan
recognizers using real-world benchmarks. Meanwhile, the
synthetic domains can provide some useful insight.

1MovingAI Lab: https://movingai.com/
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Figure 2: Representation of our architectures for the navigation domain. (xi, yi) stands for the coordinates of the agent’s location
in the grid. (a), (b), and (c) were trained on a single map, while (d) was trained on multiple maps.

Deep Neural Networks

The deep neural networks were built using specific tools
and hyper-parameters depending on the benchmark. For the
navigation benchmark, we experimented with three differ-
ent neural networks (see figure 2): a fully connected net-
work, an LSTM network and a convolutional neural network
(CNN). We felt the LSTM network and the CNN were ap-
propriate for this domain, given that LSTMs usually perform
well learning from sequences, whereas the CNN is usually
appropriate for learning from 2D data (the graphic map in
our case). The fully connected network has 4 dense layers
of 20, 20, 10 and 5 units respectively, the LSTM has 100
units, and convolutional networks have 7 layers of 8 filters
of size 8x8 or 5x5. For the four other domains, we used a
fully connected network with three dense layers of 256, 32
and 5 units respectively. We do not need a CNN here since
the input is not a 2D map as in the navigation domain.

Besides the architecture, an implementation of a neural
network involves the choice of specific parameters, activa-
tion functions, and optimization algorithm. Given that we
want to find a correct goal amongst a set of possible ones
and work with probabilistic scores, we quantify the loss with
the categorical cross-entropy function and work with accu-
racy metrics, as it is common in such a context of applica-
tion. Hidden layers are activated with the ReLU function,
while the output layer was activated with the softmax func-
tion. To train the networks, the Adam optimizer (Kingma
and Ba 2014) was used, with a learning rate of 0.001, beta1
of 0.9, beta2 of 0.999 and no decay. To prevent overfitting,
we also used dropout (Srivastava et al. 2014) for all layers
with a drop chance set to 0.1 or 0.2. Finally, inputs were
shuffled uniformly prior to training.

Experiments and Results
We used the different learning approaches described earlier
for the navigation domain and for the remaining domains. As
for the inverse planning algorithm, in the navigation domain,
we used the one from (Masters and Sardiña 2017) (M-S)
which pre-computes map costs offline. For the other bench-
marks, we used the original probabilistic inverse planning
implementation (Ramı́rez and Geffner 2010) (R-G). There
is yet no proven method for pre-computing plan costs for
these domains.

Navigation Domain
As mentioned above, three types of network architectures
were trained for the navigation benchmark: one simple feed-
forward fully connected network, an LSTM network and a
fully convolutional network. Each of them was trained for
15 epochs on observations from a single map, with 100
observed paths. We additionally trained the convolutional
network on multiple maps, regardless of their goals, start
and obstacle positions, to see if and how it could general-
ize across multiple plan recognition navigation domains. To
mimic suboptimal behavior, we started by generating noisy
optimal paths to these goals with a modified A* algorithm.
As paths were generated, we split our data into 2 parts: the
training set was filled with entire paths (from start to goal),
while the test set was made of sub-paths sampled from 0%
to X% of the total path, where X ∈]0, 100[.

We used (x, y) coordinates as input for the fully con-
nected network (FC) and LSTM methods. As paths lengths
may differ, we eventually retained a fixed number of posi-
tions among the ones available to form inputs of fixed size,
padding with zeros shorter sequences. The output is a prob-
ability distribution over the possible goals.

For the fully convolutional network (CNNBitmap), the
map was converted to a 4-channel image, where each chan-



nel displays in a black or white manner information on dif-
ferent aspects of the observations and the problem, such as
the initial position, the positions of the potential goals, the
visited positions, and walkable positions that are neither of
the above. This transformed bitmap was afterwards given as
an input to the network, to retrieve as an output a probability
distribution over the goals.

Since methods FC, LSTM and CNNBitmap were trained
and tested on the same map, where goals were known in ad-
vance, it was possible to deduce a probability distribution
array of fixed size (equal to the number of goals). How-
ever, we could not make this assumption for the general fully
convolutional method (CNNMultimaps) trained on multiple,
different maps. The latter outputs a probability distribution
over the entire map, representing the belief that the agent’s
goal is at one position or another, allowing any number of
goals and positions in general.

For the (Masters and Sardiña 2017)’s method (labeled M-
S), only the last position of sub-paths was used. The output
is, again, a probability distribution over the possible goals.

We compared the accuracy of those 4 different networks
on test sets with M-S. Cost maps were generated using op-
timal paths returned by the A* algorithm and stored prior
to the call at the plan recognition algorithm. To compute the
accuracy for both networks and inverse planning algorithms,
we simply checked if the goal with maximal posterior prob-
ability matched the true goal of the agent. To compute the
posterior probabilities in the case of M-S, we assumed prior
probabilities to be uniform and used the default value of the
beta parameter (1).

Results are shown in figure 3. The Y-axis represents the
average accuracy on different maps, which is the percentage
of correct predictions (a prediction is said to be correct if the
true goal has the highest probability). The X-axis refers to
the percentage sampled from total paths in the test set (for
instance, if a path is a sequence of 100 positions, a sub-path
sampled from 0% to 25% will only be comprised of some of
the first 25 positions).
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Figure 3: Results of accuracy depending on the percentage
retained from the complete observed path, in the navigation
domains.

As it can be seen, method FC (with an input of size
10) ranks first, followed by the fully convolutional network
(CNNBitmap). The reason could be that the local connec-
tivity of the convolution filters of the network impairs it for
early predictions since it cannot reason about the observed
path and the goals at the same time, as their positions often

do not both enter the parameters window (i.e. the stacked
convolution filters) for the first observations.

We have the intuition that better predictions could be
achieved by using modified convolutional network archi-
tectures specialized for planning and predicting in 2D in-
puts like grid-worlds, such as value iteration network (Tamar
et al. 2017) and visual relational reasoning (Watters et al.
2017). We will explore this avenue in future experiments.

The convolutional network trained on all maps shows rel-
atively bad early predictions, proving there is still room for
improvement in order for neural networks to generalize to
multiple maps. Nonetheless, the method shows already great
prediction potential and may be significantly improved by
the use of the specialized architectures mentioned above.

Computing plan costs takes time, even offline. The results
suggest that training neural networks, even if computation-
ally complex, may be advantageous in this regard thanks to
the trivially parallelizable nature of its operations and the
computation power of modern hardware. However, a com-
putation time comparison does not enlighten new advan-
tages for this kind of context. Table 1 gives a summary of
the offline and online computation times. The LSTM net-
works have longer training times but may generalize better
to longer sequences of observations with bigger sliding win-
dows (since we fixed the maximum number of observations
input to 10 and thus do not benefit fully from LSTM’s train-
ing power over sequences). The CNN trained on multiple
maps takes a long time to train but could have the potential
to generalize to every navigation problem, so no additional
training would be required for an unseen map. Symbolic ap-
proaches have no need of training nor dataset, but knowl-
edge about the domain is required to handcraft the model
and costs must be generated for every new map, whether it
is offline or online (during prediction).

T P

FC 10 s 10µs
LSTM 30 s 4 ms
CNNBitmap 10 s 4 ms
CNNMultimaps 20 min 4 ms
R-G 0 1 s
M-S 7 s 10µs

Table 1: Comparison of rough average computation times of
the evaluated approaches on the navigation domain. T is the
offline computation time, prior to the prediction. It corre-
sponds to the training time for neural networks and the gen-
eration of costs maps for M-S. R-G do not precompute costs
and reruns the planner for every 2|G| planning problems of a
plan recognition problem. P is the online prediction time. It
is the time required to output a probability distribution over
the goals of a plan recognition problem.

Other Domains
The navigation benchmark deals with path-planning prob-
lems requiring much less domain abstractions than the other



domains, that are BLOCKS WORLD, INTRUSION DETEC-
TION, KITCHEN and LOGISTICS. The last four benchmarks
correspond to task-planning problems, involving constraints
that differ from those in the navigation benchmarks, thus re-
quiring different kinds of domain representations. In fact,
we represented the last four benchmarks using the Planning
Domain Definition Language (PDDL) (Ramı́rez and Geffner
2010).

A fully connected network was trained on each of these
task-planning domains during 15 epochs, with a number of
training examples ranging from 1000 to 3000 depending on
the domain. We also trained an LSTM on these examples,
but it ended up taking more time without providing signifi-
cant result improvements. A training example in the datasets
is a sequence of observations from PDDL files, encoded with
zeros or ones. The datasets are split 80%-20% for training
and test.

A training example corresponds to a sequence of obers-
vations. Each observation in the sequence is one action type
plus its arguments which are transformed to a one-hot vector
(for instance, if there are 3 possible action types, there will
be 3 corresponding vectors: 100, 010, and 001). The neu-
ral network receives the complete sequence of transformed
observations. To match a fixed input size, sequences shorter
than the maximum size are padded with zeros and shifted
maxSize− size+1 times (for instance, if one observation is
AB and the maximum size is 4, 3 new observations will be
created: AB00, 0AB0, 00AB), hence generating new train-
ing data. The network returns a probability distribution over
the potential goals pursued, given the observations.

We compared the accuracy of the network with the one
from (Ramı́rez and Geffner 2010), labeled R-G. The costs
were generated online, as implemented by (Ramı́rez and
Geffner 2010), from optimal plans found by the HSP plan-
ner. The beta parameter was left at its default value (1) and
the prior probabilities of the goals were presumed to be uni-
form.

Results in figure 4 show that the fully connected network
trained with observations outperforms the R-G approach al-
most every time. In addition to providing higher prediction
rates, networks are also quicker: on such plan recognition
problems, the training part takes approximately 1 minute to
infer reusable weights, while one prediction is made under
1ms. The R-G approach does not require training nor offline
computation, but provides a prediction in minutes, some-
times hours, which is really long and cannot be applied to
real-time decision making. A suboptimal planner might re-
duce computation times, but we can reasonably assume that
it would still remain above several minutes or so for each
goal prediction.

Conclusion
The above comparison between deep learning and sym-
bolic inverse planning, although still preliminary, suggests
that deep learning outperforms symbolic inverse planning,
at least in the five domains considered.

A next step of the pursued experimentation is validating
the experiment on real word data. Further experimentations
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B-W 1 B-W 2 B-W 3 I-D K L 1 L 2 L 3
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Figure 4: Results of accuracy for the task-planning domains
(B-W, I-D, K, and L stand for BLOCKS WORLD, INTRU-
SION DETECTION, KITCHEN and LOGISTICS respectively).
The neural network outperforms R-G in almost every plan
recognition domain.

can try different deep neural networks (Goodfellow, Ben-
gio, and Courville 2016), different symbolic plan recogni-
tion methods, different multi-agent configurations for plan
recognition, sensor limitations (partial observability vs full
observability), attitudes between the observed agent and the
observer (cooperative, adversarial, neutral), and different
domains of application.

It should be noted that inverse planning is a princi-
ple, albeit implemented so far by symbolic inference tech-
niques (Ramı́rez and Geffner 2010; Masters and Sardiña
2017; Baker, Saxe, and Tenenbaum 2009). Various deep
neural network architectures attempt to implement plan-
ning techniques previously implemented using symbolic ap-
proaches. Value iteration networks implementing the value
iteration algorithm for Markov decision planning prob-
lems (Tamar et al. 2016) or deep reinforcement learn-
ing implementing traditional reinforcement learning algo-
rithms (Mnih et al. 2015; 2016) are some examples. In a
similar vein, it would be interesting to implement inverse
planning using a neural network. Since inverse planning is
a concept, here we used the terminology symbolic inverse
planning to refer to the symbolic implementation of the con-
cept.

In some applications, it is important that the plan recog-
nizer explains the rationale of its inferences. However, ex-
tracting a meaningful explanation from a neural network still
remains a challenge. In contrast, the symbolic representation
of symbolic plan recognizers makes the explanations easier,
except that, as we have argued, those approaches are difficult
to ground in real-world environments. This suggests that the
exploration of hybrid approaches, such as those discussed in
the related work section, remains worth pursuing.
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