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Motivation

Understanding the behavior of people, machines, and our environment 
is something we as humans do continuously. Sometimes we do so to 
satisfy our curiosity, but much of the time it's purposeful -- so that we 
can decide how to act. 
Our ability to make sense of observed behavior is informed by our 
expectations of the behavior of the actor and by our observations, and 
the quality of the conclusions we draw relies heavily on the quality of 
these two elements. 
In many cases we have agency to actively sense and manipulate the 
world in service of this pursuit.  Whether it's goal recognition, plan 
recognition, narrative understanding, video interpretation, or 
diagnostic problem solving, the patterns of inference are similar. 
In this talk I’ll cast these somewhat disparate tasks as instances of the 
general problem of behavior interpretation and discuss the elements 
that inform its effective realization. The discussion will be informed by 
past and ongoing work in my research group on diagnostic problem 
solving and goal and plan recognition.
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Pattern of Inference
Align  
• observations realized over time, with 
• some expectation of behavior

obs obs obsobs obs obs obs

a1 a2 a3 an… … … … … … … … … … … … … … … … … … … …
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Relationship to Planning
Various tasks related to behavior interpretation can be realized by 
AI planning:
• Non-classical planning
• Conformant planning
• Conditional planning (i.e., offline contingent planning)
• Contingent planning
• Epistemic Planning
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Relationship to Planning
Various tasks related to behavior interpretation can be realized by 
AI planning:
• Non-classical planning
• Conformant planning
• Conditional planning (i.e., offline contingent planning)
• Contingent planning
• Epistemic Planning

Continuing advances in planning technologies are enabling us to 
revisit and make progress on tasks that historically we 
understood how to specify but were unable to realize 
computationally.  We see this in some of the work that follows.
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There are a bunch of moving parts
• What model(s) (or data)  do you use to generate expectations?
• What are your observations?  Are they regular, sufficient? Are 

they noisy?
• What constitutes an alignment (consistency,  entailment, …)
• What does the solution look like?  
• What purpose does/should the solution serve?
• What computational machinery are you using?
• Is the interpretation done post hoc or online?
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Intermission
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About the intermission …

This was the “magic show” where the diagnosis of 
a malfunctioning flashlight was used to 
interactively demonstrate concepts related to 
automated diagnosis, goal recognition, and active 
behavior interpretation more generally.
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Observations from the flashlight example
• Goal/Plan recognition can be done post hoc or online
• Observations of action and state are both relevant & useful

• Goals can be temporally extended
• Goals can be epistemic
• The actor (me) used beliefs about the observers’ (changing) models 

to realize her goal 
• The observer can have agency to sense/reason/act to expedite or 

make possible recognition or to assist or impede goal realization

• It’s important to model the actions in the context of the environment
• The recognition task is often purposeful – you need not find a unique 

answer/solution. Often one need only discriminate sufficiently to 

decide how to act. 
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The Rest of This Talk
I. Diagnosis as Planning
II. Diagnostic Problem Solving (and the role of epistemics)
III. What Sensing Tells Us (and the notion of tests)
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I. Diagnosis as Planning
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(Some*) previous work on diagnosisPrevious Work

..., (Reiter, 1987),
(de Kleer & Williams, 1989),
(Junker, 1991),
(de Kleer, Mackworth, & Reiter, 1992),
(Torta & Torasso, 2004),
(Cordier & Thiébaux, 1994),
(McIlraith, 1994),
(Sampath, Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995),
(Thielscher, 1997),
(McIlraith, 1998),
(Baral, McIlraith, & Son, 2000),
(Iwan, 2001),
(Lamperti & Zanella, 2003),
(Iwan & Lakemeyer, 2003),
(Mikaelian, Williams, & Sachenbacher, 2005),
(Pencolé & Cordier, 2005),
(Grastien, Anbulagan, Rintanen, & Kelareva, 2007a),

(Rintanen & Grastien, 2007),...

: 3
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Diagnosis as Planning [Sohrabi, Baier, M, KR10, AAAI11; M, AAAI97] The Paper

Task: Diagnosis of Discrete Dynamical Systems

Given a description of system behaviour and a set of observations,
determine what happened to the system in terms of actions that
have occurred and that can account for the observed behaviour.

Objective:

Leverage state-of-the-art planning for the generation of diagnoses.

Contributions:
1 Our formal characterization of diagnosis,

2 Correspondence between diagnosis and planning,

3 State-of-the-art planning for the generation of diagnoses.

: 2
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Example Example 1 - Diagnosis [Sohrabi, Baier, M, KR2010, AAAI11]

Observations
I started my car this morning; drove to work; on the way to work I
bought $5 worth of gas; I hit a pothole; the radio said it was -20
Celsius; I parked outside. At noon, I picked up my bag from the
trunk of the car. At the end of the day, my car would not start. I
checked the radio and it was still working.

What’s the explanation for my car not starting?

Battery died

Punctured gas tank, then ran out of gas

Starter motor broke

: 8

McIlraith - PAIR 2020, February 8, 2020



Example 1 - Diagnosis [Sohrabi, Baier, M, KR2010, AAAI11]

Observations
I started my car this morning; drove to work; on the way to work I
bought $5 worth of gas; I hit a pothole; the radio said it was -20
Celsius; I parked outside. At noon, I picked up my bag from the
trunk of the car. At the end of the day, my car would not start. I
checked the radio and it was still working.

What’s the explanation for my car not starting?

Battery died

Punctured gas tank, then ran out of gas

Starter motor broke

: 8

Example 

Observations 
are over state 
properties and 

actions
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Classical Planning 101Classical Planning 101

Classical Planning
• Initial State
• Goal State
• Transition System

goal stateinitial state
a1 a2 a3 ak

Plan = {a1, a2, a3,…, ak}

: 7
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Diagnosis as Non-Classical PlanningFrom Planning to Diagnosis

Dynamical Diagnosis
• Initial State
• Goal State
• Transition System

obsnobs1 a1 a2 a3 ak

Diagnosis = {Assumptions, {a1, a2, a3, …, ak}}

System Description

obs2 obs3 . . .

Observations
(i.e., multiple partial states)

: 9
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Assumptions together 
with conformant plans 
guarantee executability 

and goal realization.



Observations in Linear Temporal Logic 
Observations play the role of Temporally Extended Goals expressed in Linear 
Temporal Logic (LTL), a compelling logic to express temporal properties of 
traces.
Syntax

Properties
• Fluents augmented with “occ(a)” to express the occurrence of actions.
• LTL Interpreted over finite or infintite traces.
• Can be transformed into automata.

LTL in a Nutshell

Syntax

Logic connectives: ^,_,¬
LTL basic operators:

next: ⌦'
weak next: ✏'
until:  U�

Other LTL operators:

eventually:  ' def
= trueU'

always: �' def
= ¬ ¬'

release:  R�
def
= ¬(¬ U¬�)

Example: Eventually hold the key, and then have the door open.

 (hold(key) ^⌦ open(door))

Finite and Infinite interpretations

The truth of an LTL formula is interpreted over state traces:

LTL, infinite traces

LTLf , finite traces 1

1cf. Bacchus et al. (1996), De Giacomo et al (2013, 2015)
Camacho et al.: Bridging the Gap Between LTL Synthesis and Automated Planning 5 / 24
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Explanatory DiagnosisCharacterizing Explanations

Definition (Explanation)

Given a system Σ = (F,A, I), and an observation ϕ, expressed in
LTL an explanation is a tuple (H,α), where

1 H is a set of clauses over F st. I ∪H is satisfiable, I ̸|= H,

2 α = a0a1 . . . an, a sequence of actions in A st. α satisfies ϕ in
the system ΣA = (F,A, I ∪H).

Definition (Optimal Explanation)

Given a system Σ, E is an optimal explanation for observation ϕ iff

1 E is an explanation for ϕ, and

2 there does not exist another explanation E′ for ϕ st E′ ≺ E.

: 26

Use LTL to 
represent 

observation
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Relationship to PlanningRelationship to Planning

Proposition

Given a dynamical system Σ and an observation formula ϕ, then

(H,α = a0a1 . . . an) is an explanation
iff

α is a plan for conformant planning problem
P = ((F,A, I ∪H),ϕ)
where I ∪H is satisfiable and ϕ is a temporally extended goal.

Theorem
Given a dynamical system Σ and a temporally extended formula ϕ,
explanation existence is PSPACE-complete.

Theorem
It is possible to find explanations using classical planning.

Generation of an optimal explanation corresponds to
preference-based planning problem.

: 27
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: 27

Incomplete information 
about the initial state, so 

not classical planning. 
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Diagnosis as Planning
See the paper for discussion of computation, experiments, and 
the use of Past LTL preferences.
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The Rest of This Talk
I. Diagnosis as Planning
II. Diagnostic Problem Solving (and the role of epistemics)
III. What Sensing Tells Us (and the notion of tests)
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II. Diagnostic Problem Solving 
(and the Role of Epistemics)

Looking at diagnosis purposefully and
the myriad of tasks associated with diagnosis, testing and repair

Be PURPOSEFUL!
What problem(s) do we need to solve? 

What’s an appropriate “solution”?
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Diagnostic Problem Solving: A planning perspective 
[Baier, Mombourquette, M, KR14] 

Contributions

Our Contributions

Discuss reasoning tasks associated with diagnostic problem
solving

Identify the need for epistemic goals

Map those tasks to o✏ine automated planning

Show that epistemic goals can be compiled away

Characterize the complexity of those tasks

Investigate how state-of-the-art planners scale at these tasks

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 3 / 34
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Diagnosis (following [Reiter, AIJ87]) 
Characterization of Diagnosis (à la Reiter, 1987)

Static System

A static system is a tuple (SD,COMPS ,OBS)

SD: system description

COMPS : set of components

OBS : observations

In the flashlight example:

SD: on ^ ¬AB(battery) ^ ¬AB(switch) � light

COMPS : {battery , switch}
OBS : {on,¬light}

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 6 / 34
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Minimal Diagnosis
Minimal Diagnosis

Diagnosis

Given a diagnostic system ⌃SD , � ✓ COMPS is a diagnosis i↵

SD [
[

c2�
AB(c) [

[

c 02COMPS\�

¬AB(c 0)

is satisfiable.

Minimal Diagnosis

� is a minimal diagnosis of ⌃SD if � is a diagnosis and no other
proper subset �0 of � is a diagnosis.

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 7 / 34
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Dynamism makes problem interesting
Dynamism Makes the Problem Interesting

In a dynamic domain:

The agent can manipulate the system via actions

Repair actions could be available

Sensing actions could be available

The best course of action may or may not involve
sensing/repairing

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 8 / 34

Dynamism Makes the Problem Interesting

In a dynamic domain:

The agent can manipulate the system via actions

Repair actions could be available

Sensing actions could be available

The best course of action may or may not involve
sensing/repairing

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 8 / 34

McIlraith - PAIR 2020, February 8, 2020



Dynamical System ModelDynamical Systems Model

Dynamic systems as transition systems as a tuple
⌃ = (F ,A,⌦, I )

F : set of fluents

A: set of actions that admit conditional e↵ects of the form
C ! L, for C a conjunction of fluent literals and L a fluent
literal.

⌦: set of sensing actions

I is a boolean formula describing an initial belief state.

Propositional model

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 9 / 34
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Diagnostic Problem Solving

Diagnostic Problem Solving includes diagnosis, 
testing and repair.  
A unique diagnosis may not be the desired outcome. 
We may wish to
• Eradicate egregious behavior
• Repair the system
• Confirm/refute specific diagnoses/hypotheses
• Confirm/refute certain properties of the system
• …

McIlraith - PAIR 2020, February 8, 2020



Diagnostic System
Diagnostic System

Given SD, COMPS , OBS , and ⌃ = (F ,A,⌦, I ), a diagnostic
system ⌃SD is a tuple (F 0,A0,⌦, I 0) where:

F 0 = F [ Vars(SD) [ {AB(c)} for all c 2 COMPS

I 0 = I [ SD [ OBS .

A0 = A but augmented, following (Pinto 99), to address the
ramification problem

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 11 / 34

It’s important to model the 
“environment” (here the device) 
and how actions indirectly affect 

many aspects of the 
environment.
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System Description as Action Theory
Describing the System using a Planning Language

Input System:

SD: on ^ ¬AB(battery) ^ ¬AB(switch) � light

COMPS : {battery , switch}
OBS : {on,¬light}

Initial Action Theory:
a prec(a) E↵ect/Observation

turn-on ¬on on
change-battery true ¬AB(battery)

fix-switch true ¬AB(switch)
sense-light true light

Augmented Planning Action Theory:
a prec(a) (some) Additional E↵ects [via Pinto 99]

turn-on ¬on ¬AB(battery) ^ ¬AB(switch) ! light
change-battery true on ^ ¬AB(switch) ! light

fix-switch true on ^ ¬AB(battery) ! light
sense-light true

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 12 / 34
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Indirect Effects 
of Actions are 

Important!
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Planning Task CharacterizationPlanning Task Characterization

Plans are defined as action trees:

Given a system ⌃ = (F ,A,⌦, I ), an action tree T is:

✏; or

aT 0, where a 2 A, and T 0 is an action tree; or

a(T 0,T 00), where a 2 ⌦ and T 0 and T 00 are action trees.

Given action tree T , we say that

(T , S) ` (T 0, S 0)

i↵
executing one step of T in S leads you to S 0 with T 0 remaining,

where S is a set of states

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 13 / 34
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Our diagnostic problem 
solving tasks requiring 
sensing are conditional 

planning task (i.e., 
offline contingent 

planning) 
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Diagnostic PlanDiagnostic Plan

Given a diagnostic planning task (⌃SD , Init,�,G ) where:

⌃SD = (F ,A,⌦, I ), the diagnostic system

Init, additional initial state information

�, logical formula representing state constraints

G , diagnostic planning goal literals

Action tree T is a diagnostic plan for (⌃SD , Init,�,G ) under the
constraint � i↵

For every S such that (T , S
0

) `⇤ (✏, S), s |= G , for every
s 2 S .

For every S such that (T , S
0

) `⇤ (T 0, S), s |= �, for every
s 2 S .

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 14 / 34
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Diagnostic Problem Solving TasksDiagnostic Problem Solving Tasks

Eradicate Egregious Behaviour

“I want the light to be on”

Given a diagnosis �, do a repair

Know whether a certain diagnosis �

“I want a plan to know whether John has an allergy to X”

Discriminate between two diagnosis �
1

, �
2

“Generate a plan to determine if John has a bacterial or
fungal infection”

Purposeful View.

Do not necessarily give me a diagnosis. I care about acting.

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 15 / 34
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Diagnostic Problem Solving Tasks
Diagnostic Problem Solving Tasks

Eradicate Egregious Behaviour

G = ¬OBS
Given a diagnosis �, do a repair

Init = {AB(�)} [ {¬AB(COMPS \�)}

G = ¬AB(�)

Know whether a certain diagnosis �
G = KnowWhether(AB(�))

Discriminate between two diagnosis �
1

, �
2

G = Discriminate(AB(�
1

),AB(�
2

))

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 16 / 34
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Epistemic Diagnostic Planning
Epistemic Diagnostic Planning

Belief level planning: states capture agent beliefs

K (�, S) i↵ s |= � for each s 2 S

Epistemic Plans

T is a plan for Know(�) i↵ for every S such that
(T , S

0

) `⇤ (✏, S) it holds that K (�, S),

T is a plan for KnowWhether(�) i↵ for every S such that
(T , S

0

) `⇤ (✏, S) either K (�, S) or K (¬�, S) holds, and
T is a plan for Discriminate(�, ) i↵ for every S such that
(T , S

0

) `⇤ (✏, S) either K (� ^ ¬ , S) or K (¬� ^  , S) holds.

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 18 / 34
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KnowWhether(L) compiled to Ontic GoalCompilation of KnowWhether(L) into an Ontic Goal

Compile ⌃SD = (F ,A,⌦, I ) into ⌃0
SD = (F 0,A0,⌦, I ) as

F 0 = F [ {kw -L}
A0 = A [ {kw -act-pos-L, kw -act-neg -L} such that
e↵ (kw -act-pos-L) = e↵ (kw -act-neg -L) = kw -L
prec(kw -act-pos-L) = L and prec(kw -act-neg -L) = ¬L
8a 2 A, if C ! L 2 a or C ! ¬L 2 a, add ¬kw -L as an e↵ect

Theorem (Completeness) [paraphrased]

If T is a plan for (⌃SD ,KnowWhether(L)) then there exists T 0 a
plan for (⌃SD , kw -L).

Theorem (Soundness) [paraphrased]

If T is a plan for (⌃SD , kw -L) then T 0, T with kw -act-pos-L and
kw -act-neg -L actions removed, is a plan for
(⌃SD ,KnowWhether(L)).

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 19 / 34
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Discriminate(L1,L2) compiled to Ontic GoalCompilation of Discriminate(L1, L2) into an Ontic Goal

Compile ⌃SD = (F ,A,⌦, I ) into ⌃0
SD = (F 0,A0,⌦, I ) as

F 0 = F [ {disc-L
1

-L
2

}
A0 = A [ {disc-act-1-L

1

-L
2

, disc-act-2-L
1

-L
2

} such that
e↵ (disc-act-1-L

1

-L
2

) = e↵ (disc-act-2-L
1

-L
2

) = disc-L
1

-L
2

prec(disc-act-1-L
1

-L
2

) = {L
1

,¬L2} and
prec(disc-act-2-L

1

-L
2

) = {¬L
1

, L2}
8a 2 A, if C ! L

1

, C ! ¬L
1

, C ! L
2

, or C ! ¬L
2

in a, add
¬disc-L

1

-L
2

as an e↵ect

Theorems of Soundness and Completeness similar to
KnowWhether(L)

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 20 / 34
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Complexity Results

Complexity Results

1 Diagnostic planning with complete information and without
sensing is PSPACE-complete. (Follows from Bylander 1994)

2 Diagnostic planning without sensing is EXPSPACE-complete.
(Follows from Haslum and Jonsson 1999)

3 Diagnostic planning with sensing is 2-EXPTIME-complete.
(Follows from Rintanen 2004)

Baier, Mombourquette, McIlraith (UofT+PUC): Diagnostic Problem Solving: A Planning Perspective 22 / 34

McIlraith - PAIR 2020, February 8, 2020



Diagnostic Problem Solving

We did some interesting experiments with two offline 
contingent planners (Contingent-FF [Hoffman, Brafman] and 
later CNFCT and DNFCT  [To, Pontelli, Son]. We subsequently did 
experiments with PO-PRP [Muise, Belle, M] which displayed 
far superior results. 

McIlraith - PAIR 2020, February 8, 2020



The Rest of This Talk
I. Diagnosis as Planning
II. Diagnostic Problem Solving (and the role of epistemics)
III. What Sensing Tells Us (and the notion of tests)
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III. What Sensing Tells Us
(and the notion of tests)

McIlraith - PAIR 2020, February 8, 2020



What Sensing Tells Us [M, Scherl, AAAI00, M, Reiter 1992]
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Example
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ok(radio)

plugged-in(radio)

ok(power)

Indirect Effects of “listen(radio)”
noise(radio)Action:

• listen(radio)

on(radio)
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Determine whether “ok(power)”

? ok(power)
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Action:
• turn_on(radio)

Determine whether “ok(power)”

? ok(power)
on(radio)
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Action:
• turn_on(radio)
• listen(radio)

? ok(power)
on(radio)

noise(radio)
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on(radio)

ok(radio)

plugged-in(radio)

ok(power)

noise(radio)Action:
• turn_on(radio)
• listen(radio)

Determine whether “ok(power)”
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on(radio)

?? (⌝ )ok(radio)

?? (⌝ )plugged-in(radio)

?? (⌝ )ok(power)

… silence ...

…                 ...

…                 ... …
...

...

…... …⌝ noise(radio)Action:
• turn_on(radio)
• listen(radio)

Determine whether “ok(power)”
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Problem and Approach
Problem:

Given an axiomatization of a deterministic, partially observable dynamical 
system with

• sensing actions
• state constraints 

(relationships between properties/objects in the world).
and a set of unobservable hypotheses
How do we select actions to reduce the hypothesis space?

Approach:
Provide a theory of testing for dynamical systems
in the situation calculus.
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Contributions
• “Solution” to the ramification problem for sensing actions

• Characterization of tests, and the effect of test outcomes

• Effect of test outcomes on different hypothesis spaces

• Complex tests as Golog procedures

• Verification and generation of complex tests
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Ramification Problem for Sensing Actions

Theorem (informally stated):
Our representation addresses the frame and ramification 
problems for world-altering and sensing actions.

Using this representation the agent knows the 
indirect effects of both its world-altering and sensing actions.
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Adding Knowledge and Sensing Actions

. . .

⌝ ok(power,s)
plugged-in(radio,s)
ok(radio,s)
on(radio,s)
...

ok(power,s)
⌝ plugged-in(radio,s)
ok(radio,s)
on(radio,s)
...

ok(power,s)
plugged-in(radio,s)
⌝ ok(radio,s)
on(radio,s)
...

[Scherl & Levesque,93]
[Reiter 00]
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Knowledge Fluent/Accessibility Relation K
s

do(a3, s)do(a1,s)

.........

. . .

S0

do(a3,S0)do(a1,S0)

.........

s’

do(a3, s’)do(a1, s’)

.........

Knows(f,s)       "s’ K(s’,s) É f(s’)
Knows(on(radio),s) "s’ K(s’,s) É on(radio,s’)

Kwhether(f, s)    Knows(f,s) Ú Knows(⌝ f,s) 
Kwhether(on(radio), s) Knows(on(radio), s) Ú Knows(⌝ on(radio), s)

. . .

K
K

Knowledge Fluent K(s’,s)

K

. . .
K

=def

=def

=def

=def
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Definition of a Test

Simple Test:
A simple test is a pair (I,a) where I, the initial conditions, is a 
conjunction of literals, and a is a binary sense action.

E.g., (on(radio), listen(radio))

[McIlraith & Reiter, 92]
[McIlraith, 94]McIlraith - PAIR 2020, February 8, 2020



Tests for Hypothesis Spaces
Car Domain Example [Idiots Guide to Car Repair]
(1)  ab(battery,s) Ù on(radio,s) É⌝ noise(radio,s) 
(2) ab(radio,s) É⌝ noise(radio,s) 
(3) sparking É sparks(s) 
(4) sparks(s) Ù gas_leak(s) É explosion(s)
(5) ⌝ explosion(s)

. . . 

Test of Hypothesis Space HYP:
A test (I,a) is a test for hypothesis space HYP in situation s iff
D Ù I Ù Poss(a,s) Ù H(s) is satisfiable for every H Î HYP. 

E.g.,
Hyp = {gas_leak(s), ab(battery,s), ab(spark_plugs,s), empty(tank,s)}
test (sparking, check_sparking(spark_plugs)) is not a test for  
hypothesis space HYP.
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Confirmation and Refutation

Confirmation and Refutation:
The outcome a of test (I,a) confirms H Î HYP iff
• D Ù I Ù Poss(a,s) |= Knows(H É a, s)
The outcome a of test (I,a) refutes H Î HYP iff
• D Ù I Ù Poss(a,s) |= Knows(H É⌝ a, s)

E.g.,
Hyp = {gas_leak(s), ab(battery,s), ab(spark_plugs,s), empty(tank,s)}
test = (on(radio), listen(radio))
outcome noise(radio,s) refutes hypothesis ab(battery,s).
outcome⌝noise(radio,s) confirms hypothesis ab(battery,s).

Car Domain Example (repeated)
(1)  ab(battery,s) Ù on(radio,s) É⌝ noise(radio,s) 
(2) ab(radio,s) É⌝ noise(radio,s) 
. . . 
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Discriminating Tests
Discriminating Test:
A test (I,a) is a discriminating test for hypothesis space HYP iff
• D Ù I Ù Poss(a,s) Ù H(s) is satisfiable for every H Î HYP, and
• There exists Hi, Hj Î HYP such that outcome a of test (I,a) 

refutes either Hi or Hj no matter what the outcome. 
If Hi =⌝ Hj, (I,a) is an individual discriminating test.

E.g.,
Hyp = {gas_leak(s), ab(battery,s), ab(spark_plugs,s), empty(tank,s)}
test (true, check_empty(tank)) is an individual discriminating test.

Other Tests:
• relevant test
• constraining test
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Testing Hypotheses
The efficacy of a test depends on the criteria defining 
the hypothesis space.

Consistency-based hypotheses
Given outcome a of test (I,a), any H Î HYP such that

D Ù I Ù Poss(a,s) Ù H(s) Ù a is satisfiable.

Abductive hypotheses
Given outcome a of test (I,a), any H Î HYP such that

D Ù I Ù Poss(a,s) Ù H(s) |= a.

Proposition (informally):
The outcome a of test (I,a) eliminates those consistency-based
hypotheses H(s) Î HYP that are refuted by test outcome a.

The outcome a of test (I,a) eliminates those abductive
hypotheses H(s) Î HYP that are not confirmed by test outcome a.
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Proposition (informally):
Any outcome a of a relevant test (I,a) can eliminate abductive 
hypotheses.

Only a refuting outcome, a can eliminate a consistency-based 
hypotheses.

Discriminatory test outcomes (by defn) can eliminate either
a consistency-based or an abductive hypothesis, regardless of 
the outcome.

[McIlraith & Reiter, 92]
[McIlraith, 94]

Testing Hypotheses
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The efficacy of a test depends on the criteria defining the 
hypothesis space.

Proposition (informally):
Any outcome a of a relevant test (I,a) can eliminate abductive 
hypotheses.

Only a refuting outcome, a can eliminate a consistency-based 
hypotheses.

Discriminatory test outcomes (by defn) can eliminate either
a consistency-based or an abductive hypothesis, regardless of 
the outcome.
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Complex Tests as Knowledge-Based Programs
S0

do(a3,S0)do(a1,S0)

.........

Golog [Levesque et al, 97]
• sequencing
• if-then-else
• while-do
• nondeterministic choice
etc.

Proc CHECKBATTERY
TURN_ON(RADIO); LISTEN(RADIO);
if⌝ Kwhether(AB(BATTERY) then 

(TURN_ON(LIGHTS); LOOK(LIGHTS));
if⌝ Kwhether(AB(BATTERY) then

(if⌝ Kwhether(AB(FUSES) then CHECKFUSES);
if Knows(⌝ AB(FUSES) then METERCHECKBATTERY 

else (FIXFUSES; CHECKBATTERY))
endProc

OBSERVE:  Complex tests can have side-effects on the world.
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Complex Tests as Knowledge-Based Programs
S0

do(a3,S0)do(a1,S0)

.........

Golog [Levesque et al, 97]
• sequencing
• if-then-else
• while-do
• nondeterministic choice
etc.

Proc CHECKBATTERY
TURN_ON(RADIO); LISTEN(RADIO);
if⌝ Kwhether(AB(BATTERY) then 

(TURN_ON(LIGHTS); LOOK(LIGHTS));
if⌝ Kwhether(AB(BATTERY) then

(if⌝ Kwhether(AB(FUSES) then CHECKFUSES);
if Knows(⌝ AB(FUSES) then METERCHECKBATTERY 

else (FIXFUSES; CHECKBATTERY))
endProc

OBSERVE:  Complex tests can have side-effects on the world.

conditional plans that 
can be used to realize 

diagnostic goals
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Test Verification and Generation

Theorem (informally stated):
Regression rewriting reduces the verification problem to theorem
proving in the initial situation.

Verification: We can automatically verify certain properties of a
restricted class of complex tests, e.g.,

Proving Verifies that the procedure
ÚH Î HYP Kwhether(H,s) reduces the hypothesis space HYP
ÚH Î HYP Knows(⌝ H,s) is a discriminating test for HYP

Generation: We can automatically generate an even more restricted 
class of complex tests that satisfy particular properties,  e.g., 

Kwhether(ab(battery),s)
in a brute-force manner by searching through the space of conditional 
plans, followed by regression and theorem proving in the initial
situation. (not efficient!)

[Lesperance, 94]
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And if I had time for one more thing …
• The utility of (Logical) Smoothing and Filtering in these 

behavioral interpretation tasks when we are dealing with partial 
observability [Mombourquette, Muise, M, AAAI17],  [Amir, 
Russell, IJCAI03]
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RECAP
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Plan Recognition
Goal Recognition

Behavior Interpretation

Automated Diagnosis Video Analysis

Activity Recognition

Narrative UnderstandingIntent Recognition

Environmental Interpretation

Explanation Generation

Auditing/Monitoring of Business Processes

about people about machines/devices about the world around us
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Pattern of Inference
Align  
• observations realized over time, with 
• some expectation of behaviour

obs obs obsobs obs obs obs

a1 a2 a3 an… … … … … … … … … … … … … … … … … … … …

McIlraith - PAIR 2020, February 8, 2020



Relationship to Planning
Various tasks related to behavior interpretation can be 
realized by AI planning:
• Non-classical planning
• Conformant planning
• Conditional planning (i.e., offline contingent planning)
• Contingent planning
• Epistemic Planning

Continuing advances in planning technologies are enabling us to 
revisit and make progress on tasks that historically we 
understood how to specify but were unable to realize 
computationally.  We see this in some of the work that follows.
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Observations from the flashlight example
• Goal/Plan recognition can be done post hoc or online
• Observations of action and state are both relevant & useful

• Goals can be temporally extended
• Goals can be epistemic
• The actor (me) used beliefs about the observers’ (changing) models 

to realize her goal 
• The observer can have agency to sense/reason/act to expedite or 

make possible recognition or to assist or impede goal realization

• It’s important to model the actions in the context of the environment
• The recognition task is often purposeful – you need not find a unique 

answer/solution. Often one need only discriminate sufficiently to 

decide how to act. 
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Can any of this inform goal recognition?
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Stay Tuned
• Active Goal Recognition can be achieved by integrating ideas of 

sensing and test generation to construct contingent plans that 
can expedite or make possible goal recognition [Shvo, M, 
AAAI2020] (Spotlight and poster on Monday)
• Epistemic Plan Recognition Epistemics and theory of mind play 

a critical role in plan recognition [Shvo, Klassen, Sohrabi, M, 
PAIR2020 & AAMAS 2020] (Next talk)
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