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Planning

e Planning is the model-based approach to action selection: behavior obtained
from model of the actions, sensors, preferences, and goals

Model —> | Planner | = Controller

e Many planning models; many dimensions: uncertainty, feedback, costs, . ..
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Basic Model: Classical Planning

e finite and discrete state space S

e a known initial state sp € S

e aset Sg C S of goal states

e actions A(s) C A applicable in each s € S

e a deterministic transition function s’ = f(a,s) for a € A(s)

e positive action costs c(a, s)

A solution is a sequence of applicable actions that maps sg into Sg, and it is
optimal if it minimizes sum of action costs (# of steps)

Other models obtained by relaxing assumptions in bold . . .
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Uncertainty and Full Feedback: Markov Decision Processes

Goal MDPs are fully observable, probabilistic state models:

e a state space S

e initial state sp € S

e aset Sg C 5 of goal states

e actions A(s) C A applicable in each state s € S

e transition probabilities P,(s’|s) for s € S and a € A(s)

e action costs c(a,s) > 0

— Solutions are functions (policies) mapping states into actions

— Optimal solutions minimize expected cost to goal
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Partial Feedback: Partially Observable MDPs (POMDPs)

Goal POMDPs are partially observable, probabilistic state models:

states s € S
actions A(s) C A
transition probabilities P,(s’|s) for s € S and a € A(s)

observable goal states Sz C S

initial belief state b

sensor model given by probabilities P,(o|s), o€ O, s € S

Belief states are probability distributions over .S
Solutions are policies that map belief states into actions

Optimal policies minimize expected cost to go from by to Sg
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Example

Agent A must reach G, moving one cell at a time in known map

e |f actions deterministic and initial location known, planning problem is classical
e If actions stochastic and location observable, problem is an MDP

e If actions stochastic and location partially observable, problem is a POMDP

Three problems, three models, three solution forms
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From Planning to Plan/Goal Recognition

e General idea: solve plan recognition problem over model (classical, MDP,
POMDP) using planner for that model.

e Early work in this direction using classical models, MDPs, and POMDPs:

Plan Recognition as Planning, M. Ramirez and H. G., Proc. 1JCAI-2009

> Probabilistic Plan Recognition using off-the-shelf Classical Planners, M. Ramirez and H.
G., Proc AAAI-2010

> Goal recognition over POMDPs: Inferring the intention of a POMDP agent. M. Ramirez

and H. G., Proc [JCAI-2011

v

Goal Inference as Inverse Planning, C. Baker, J. Tenenbaum, R. Saxe. Proc. Cog-Sci 2007

> Action Understanding as Inverse Planning. C. Baker, R. Saxe, and J. Tenenbaum.
Cognition, 2009

> Bayesian theory of mind: Modeling joint belief-desire attribution. C. Baker, R. Saxe, J.

Tenenbaum, Proc. Cog Science 2011

v
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Example: Classical Setting

A B C
J S D
H F E

e Agent can move one unit in the four directions
e Possible targets are A, B, C, . ..
e Starting in S, he is observed to move up twice

e Where is he going? Why?

H. Geffner, Goal Recognition: Models, Algorithms, Challenges. AAAI Workshop PAIR, NY 2/2020



Example (cont’d)

A B C

e From Bayes, goal posterior is P(G|O) = a P(O|G) P(G), G € G
e If priors P(G) given for each goal in G, the question is what is P(O|G)
e P(O|G) measures how well goal GG predicts observed actions O

e In classical setting,

> G predicts O worst when needs to get off the way to comply with O
> G predicts O best when needs to get off the way not to comply with O

H. Geffner, Goal Recognition: Models, Algorithms, Challenges. AAAI Workshop PAIR, NY 2/2020



Posterior Probabilities from Plan Costs

e From Bayes, goal posterior is P(G|0O) = a P(O|G) P(G),

e If priors P(G) given, set P(O|G) to monotonic function

function(c¢(G + O) — ¢(G + O))

> ¢(G + O): cost of achieving G while complying with O

> ¢(G + O): cost of achieving G while not complying with O

— Costs ¢(G + 0) and ¢(G + O) computed by classical planner
— Goals of complying and not complying with O translated into normal goals

— Function of cost difference set to sigmoid; follows from assuming action selected
with Boltzmann distributions

— Posterior probabilities P(G|O) computed in 2|G| classical planner calls, where
G is the set of possible goals (Ramirez and G. 2010)
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Goal Recognition in other Settings: Example

e Two objects A and B: A can be in drawers 1 or 2; B can bein 1, 2, or 3
e Agent doesn't know where A and B are but has priors P(AQq), P(BQj)

e She can move around, open and close drawers, look for object in open drawer,
and grab object from drawer if known to be there

e The sensing action is not perfect, and agent may fail to see object in drawer

e Agent observed to do the actions:

O = {open(1), open(2), open(1)}

e What's the agent goal? Is she looking for object A or object B?
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Unified Formulation for Classical, MDP, and POMDP Models

O; = (a;,0;11): action a;, observation token 0;,1 by (observed) actor

Posterior probabilities: using Bayes' rule
P(G|01, e ooy On) — OéP(Ol, c ooy On|G)P(G)

Likelihood P(Ox, ..., 0,|G) from

— P(0|01,..,0n_1,G) P(Or, .., On_1|G)
— P(On—i—llala ey Any 01, --, On, G) P(a’n‘a’l) vy n—1,01, .+, 0n—1, G) P(Ol7 b On—1|G)
= P(on+1lan, bel,) P(aylbel,, G) P(Oq,..,0,-1|G) ; bel; is belief at time ¢

o P(op|an,bel,) computed from POMDP parameters

e P(alb,G) = d'exp{—B Qc(a,b)} is prob of selecting action a for G in b:

> Qala,b) = c(a,b) + >, cobal0)Va(b;), and
> Va(b) computed by planner represents expected cost from b to G
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Assumptions and Special Cases

P(Oq,...,0,|G) = P(o,|an, bely,) P(ay|bel,, G) P(O4,...,0,_1|G)

Assumptions

Observer can track beliefs of actor: model, priors, actions, and observations

Special Cases

e For MDPs, beliefs b, and observations o; replaced by states s;:

P(O1,...,0,|G) = P(spa1|an, $n) P(an|sn, G) P(O1,...,0,_1|G)

e For classical model (deterministic), no need to observe actions and states:

P(Ol, ceey On‘G) — P(an]sn, G) P(Ol, ceey On—l’G)
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Limitations and Challenges

e Scalability:

> precompute v-functions Vi (b) (Vg (s)) for all b (s) or call planner as needed
> 2|G| planner calls in classical setting approx’ed by single poly IW(2) call?

e Lack of knoweledge

> what if no access to actions, observations, model, or priors of actor

> what if observer has to act to get such observations (active goal recognition)

e Role of intention recognition for general planning agent

> why intentional agent needs to infer intentions of others?
> e.g., MDP agents with common goal: why infer other’'s subgoals?

e From goal recognition to story understanding

> general formulation to explain children stories (Little Red Riding Hood)?

> It's all about plans, intentions, and interactions unfolding . . .
> why so simple for people . . . and children (!), and not yet in reach?
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Little Red Riding Hood

Characters: Little Red Riding Hood (good, kind, skipping), Wolf (bad,
scary, gobbles), Grandma (good), Woodcutter (good, strong, brave).

Setting: Woods (birds singing, sunny), Grandma's house (small, tidy,
quaint)

Introduction: LRRH walking through woods on way to Grandma's -
taking cakes (fairy, delicious) Meets wolf asks where going (growls,
frightens)

Build-Up: Wolf goes to Grandma’s house (knocks on wooden door).
Gobbles her up (tasty, licks lips). Dresses in her clothes, gets into
bed. Waits for LRRH

Climax: LLRH arrives - door open (cautiously, carefully). Talks to the
wolf - eyes, hands, teeth (dialogue). He jumps out and chases her
into the woods. (running, tripping, screaming).

Resolution: Woodcutter hears her cries and kills the wolf with axe.
(striding, swings axe, happily ever after).
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Summary

e Model-based approach to goal recognition: use planning model and planners
to infer goals of an agent

e Many models depending on uncertainty and feedback like classical, MDPs, and
POMDPs

e Most work assumes that model of observer and actor suitably aligned;
convenient but unrealistic

e Many open questions:

> what role for intention recognition for a general planning agent?
> what general and effective model for understanding simple multigent stories?
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