Lazy is Efficient (in plan recognition)

Gal A. Kaminka

The MAVERICK Group

Computer Science Department (Gonda Brain Research Center, Nanotech Center)

Bar Ilan University, Israel

Abstract Mind Architecture (in <u>artificial intelligence</u>)

Two Processes

Perception/World Modeling:

Vision, sensor processing, sensor fusion, ...

Action Selection/Decision Making:

Planning, plan execution, goal deliberation, reacting...

My Scientific Problem: The Nature of the Social Mind

The computational mechanisms that allow the mind to reason about, and interact with, others?

(differently than *about* or *with* inanimate objects)

Abstract Mind Architecture (in artificial intelligence)

Two Processes

Perception/World Modeling:

Theory of Mind: Intents, plans of other minds (in AI: Plan Recognition) **Action Selection/Decision Making:**

Coordination: Manipulating, acting w.r.t other minds

Since 1995....

- Tracking teammates (RESL, w/ Tambe)
- Overhearing teams (YOYO, YOYO*, w/ Tambe, Pynadath)
- Overhearing using Colored Petri-nets (w/ Gutnik)
- Symbolic Recognition (SBR, w/ Avrahami-Zilberbrandt)
- Decision-theoretic rec. (UPR, w/ Avrahami-Zilberbrandt)
- Intent detection (w/ Bochek-Dokow)
- Mirroring (w/ Vered)

See: www.cs.biu.ac.il/~galk/publications/class_rescat.html

Dynamic, Continuous, Multi-Agent

Recognition Challenges

- Online: Observations incrementally received
- Complex state observations
 - Observe state, not agent actions
 - State is factored (composed of multiple features)
- Situated (reactive)
 - Observed agents react, deviate from own plans
 - What goal/plan is true <u>now</u>
- Observations stem from continuous world
 - Sensitivity to discretization (loss of information)

SBR: Symbolic Behavior Recognition [IJCAI 2005, MOO 2004-2005]

- Online, keyhole recognition, discrete observations
- Applied to vision tracker data (e.g., airport security)

SBR: Symbolic Behavior Recognition [IJCAI 2005, MOO 2004-2005]

- Online, keyhole recognition, discrete observations
- Applied to vision tracker data (e.g., airport security)

What is agent doing? Is its behavior anomalous?

SBR Plan Library: Layered, Durative Actions

- Directed acyclic connected graph
- Vertices denote plan steps (actions)
- Edges
 - Vertical (decomposition) edges
 - Horizontal (sequential) edges

- Every vertex may generate obs, have duration (cycles)
- "Or"-graph (edges denote ordered choices)

SBR Key Ideas

- Sacrifice memory to gain speed
 - Entire <u>grounded</u> library in memory, in advance
 - Auxiliary data structures to support fast queries
- Distinguish recognition queries
 - Given last observation, what might be true now
 - Given history of observations, what might have been true

SBR Key Ideas

- Sacrifice memory to gain speed
 - Entire <u>grounded</u> library in memory, in advance
 - Auxiliary data structures to support fast queries
- Distinguish recognition queries
 - Given last observation, what might be true now
 - Given history of observations, what might have been true

This allows computing only what is needed!

Current State Query What <u>is</u> True

- Generating plan-path hypotheses:
 - Tag matching plans by observation time
 - Propagate tags up/down according to <u>temporal consistency</u>

t

Ρ

- Plan P is temporally consistent in time-stamp t if:
 - No incoming sequential edges
 - OR: Exist previous plan tagged with t-1
 - OR: Tagged with t-1
- Efficient: O(M log L)
 - M number of matching plan steps
 - L size of library

Ρ

t-1

p2

p1

t-1

Current State Query: Example

Current State Query: Example

History of States Query What <u>was</u> True

- CSQ is <u>situated</u>: only hypothesizes as to current state
- Does not explain complete sequences

All possible sequences (1,2,3)? No.

History of States

Security terminates at time 2

<u>l</u> naverio

History of States

History of States

History of States Query

- Generate (or incrementally build) hypotheses graph
 - Vertices: denoting hypotheses at time t
 - Edges: connect valid continuations from t to t+1

ll

History of States Query

- Generate (or incrementally build) <u>hypotheses graph</u>
 - Vertices: denoting hypotheses at time *t*
 - Edges: connect valid continuations from t to t+1
- Valid hypotheses: paths from vertices in time t to time 1

Time

ll

SBR Highlights [IJCAI 2005, MOO 2004-2005]

- <u>Highly efficient, Complete:</u>
 - Match observations to plan library vertices in O(1)
 - CSQ is O(M log L), M # of matches, L size of library
 - History query is polynomial:
 - Graph construction is O(M²) for each observation
 - Hypotheses extraction is O(TM²)
- Extensions for interleaving, interrupting, ...
- Limitation: grounded library, must fit in memory

Lazy Commitment in SBR

- Book keeping allows delaying inference
- <u>Compute only if queried</u>
 - e.g, hypotheses graph can be built only on history query
- No commitment to ranking
 - Probabilistic or decision-theoretic ranking is separate
 - SBR as filter [AAAI 2007]; PHATT, SLIM use similar approach

Mirroring [ACS 2016, IJCAI 2017, AAAI 2018]

Observations and Plans are in Continuous Space

gestures, motions, goal locations: trajectories

Security Camera Image

Discretization (e.g., using grid)

.6

Resulting Observations

Early Commitment to Discretization

Theorem 1:

For any discretization, can find case where it fails

What is the goal of the agent? A or B?

Continuous Version

Discrete Version

Late Commitment to Discretization

Theorem 2:

For any case, can find discretization where it succeeds

What is the goal of the agent? A or B?

A

Continuous Version

Discrete Version

Challenge:

Allow Late Commitment to Discretization

- Plan recognition libraries <u>require</u> early commitment
 - Hierarchical structures, grammars, HMMs and variants
- Plan recognition by planning (PRP) has potential
 - Generates hypotheses ad-hoc, <u>after</u> getting observations
 - Expensive for online recognition

PRP in Continuous Domains

- Observations are of continuous actions?
 - —Requires domain theory describing continuous domains
- Requires planner that can work in continuous domains
 Lots of these in OMPL (Open Motion Planning Lib)
 - But cannot compute path that "deviates from O"

Mirroring [IJCAI 17, AAAI 18]

- Revised procedure for ranking hypotheses
 - Optimal plan (plan(G)) vs observed plan (plan(G+O))
 - Closer to formulation in [R&G 2009] (abandoned?)
- Generalize planning domain theories
 - Actions generate trajectories, not single final state
- Online recognition

 - Heuristics can improve performance (guaranteed)

Plan Recognition Problems

• Given *R* = <*W*,*I*,*G*,*O*>

- W domain; I initial state; G set of possible goals; O observations

• Find plans in W, from I to a goal in G, <u>that match O</u>

Plans in Domain W

Plan: sequence of actions

- States defined using fluents (numerical values allowed)
 e.g., on(A,B)=true, fuel-remaining(robot)=50.33, pos-x(r)=4.5
- Actions: trajectories of state-changes

$$- \delta(s_{BEG},a) = (S_{BEG},...,S_{END})$$

$$- S_{i} = (S_{i-1} \setminus DEL_{a}(S_{i})) \oplus ADD_{a}(S_{i})$$

Proper generalization of STRIPS actions

Finding good plan hypotheses

• Want: plan hypothesis π_R = argmax P(π |O)

Intuitively – "best matches the observations"

• We want matching that maximizes $P(\pi|O) = \beta P(O|\pi) P(\pi)$ $= \beta P(O|\pi) P(\pi|g) P(g)$ Prior on goal Plan, given goal

Obs., given plan

Focus: Maximize $P(O|\pi)$, $P(\pi|g)$

How to maximize $P(O|\pi)$, $P(\pi|g)$:

<u>Two principles:</u>

- $P(O|\pi)$ [obs. given plan]: prefer plans matching obs.
 - Minimize Error(π , O): Accumulated distance between π and O
 - $P(O|\pi) = 1 / (1+Error(\pi, O))$

- $P(\pi|g)$ [plan given goal]: prefer optimal plans
 - Assume rationality of observed
 - Higher $\underline{P(\pi \mid g)}$ when $\pi \underline{closer}$ to ideal plan π^*
 - Defined as (normalized) ratio between costs of π and π^*

How to maximize $P(O|\pi)$, $P(\pi|g)$: Shortcut

Two principles:

- $P(O|\pi)$ [obs. given plan]: prefer plans matching obs.
 - Minimize Error(π , O): Accumulated distance between π and O
 - $P(O|\pi) = 1 / (1+Error(\pi, O))$
 - = 1 when perfect = plan that goes through obs.
- $P(\pi|g)$ [plan given goal]: prefer optimal plans
 - Assume rationality of observed _____ Calls to planner
 - Higher $P(\pi | g)$ when $\pi \operatorname{closer}$ to ideal plan π^*
 - Defined as (normalized) ratio between costs of π and π^*

Domains

- Motion planners in OMPL [Şucan et al. 2012]
- Polygon drawing planner [Vered et al. 2016]
- ROS MoveBase standard navigation package

Summary: Lazy is Good

- Late commitment to discretization: a MUST
 - Remember the theorems (and shown experimentally)
 - <u>Mirroring</u>: a novel form of PRP allowed this
- Late commitment to computing queries: Efficient
- Promising: distinguish queries in PRP
 - Ignore (most of) the past [Masters & Sardina 2017]
 - Pre-computing [Marting et al. 2015, Pereira et al. 2016, 2017]
- Thanks: Friendly organizers and atmosphere at PAIR

galk@cs.biu.ac.il http://www.cs.biu.ac.il/~galk/

