
Inverse Reinforcement Learning based Human Behavior Modeling for Goal
Recognition in Dynamic Local Network Interdiction∗

Yunxiu Zeng1, Kai Xu1, Quanjun Yin1, Long Qin1, Yabing Zha1, William Yeoh2

1. The Institute of Simulation Engineering,
College of Information System and Management, NUDT, Changsha, 410073, China.
{zengyunxiu12@, xukai09@, yinquanjun@, qinlong@, zhayabing@}nudt.edu.cn

2. Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis, MO 63130, USA.

wyeoh@wustl.edu

Abstract

Goal recognition is the task of inferring an agent’s goals
given some or all of the agent’s observed actions. Among
different ways of problem formulation, goal recognition can
be solved as a model-based planning problem using off-the-
shell planners. However, obtaining accurate cost or reward
models of an agent and incorporating them into the planning
model becomes an issue in real applications. Towards this
end, we propose an Inverse Reinforcement Learning (IRL)-
based opponent behavior modeling method, and apply it in
the goal recognition assisted Dynamic Local Network Inter-
diction (DLNI) problem. We first introduce the overall frame-
work and the DLNI problem domain of our work. After that,
an IRL-based human behavior modeling method and Markov
Decision Process-based goal recognition are introduced. Ex-
perimental results indicate that our learned behavior model
has a higher tracking accuracy and yields better interdiction
outcomes than other models.

Introduction
The ability to recognize the plans and goals of other agents
enables humans, AI agents or command-and-control sys-
tems to reason about what the other agents are doing, why
they are doing it, and what they will do next (Sukthankar et
al. 2014). Plan and goal recognition systems work well in
many applications like human-robot interaction (Hofmann
and Williams 2007), dialogue understanding (Litman and
Allen 1987) and system intrusion detection (Geib and Gold-
man 2001). They have been formulated and addressed in
many ways, as a matching problem over a suitable AND/OR
graph (Avrahami-Zilberbrand and Kaminka 2005), a pars-
ing problem over grammar (Pynadath and Wellman 1998), a
probabilistic inference task over a dynamic Bayesian net-
work (Bui et al. 2002; Liao et al. 2007) and an inverse
planning problem over planning models (Baker et al. 2009;
Ramırez and Geffner 2011). All the above methods have to
leverage on the domain knowledge to some extent, for exam-
ple in the form of predefined libraries of plans or policies, or
a pre-specified agent action model along with a set of pos-
sible goals. However, there is little research on plan or goal

∗Yunxiu Zeng and Kai Xu are both first authors of this paper.
Copyright c⃝ 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

recognition that focuses on how to retrieve this information
from the real world.

In this work, we present a framework of using offline-
learned and online-modified opponent behavior model in
Markov Decision Process (MDP)-based goal recognition,
and further apply the goal recognizer in the Dynamic Local
Network Interdiction (DLNI) problem to interdict the ob-
served agent. Inverse reinforcement learning is used to learn
the agent-specific action model offline, i.e. a feature-based
reward model, from sets of example traces that are collected
from the same group of subjects. The model, modified by
online environment changes using reinforcement learning,
then replaces the original decision model (e.g. a path plan-
ner) in an approximate inference algorithm (e.g. particle fil-
ter) in the MDP-based goal recognition module. Network
interdiction is a classic Operations Research problem ap-
plied in domains involving critical infrastructure protection
(Scaparra and Church 2008), public transportation (Laporte
et al. 2010) and public security (Cappanera and Scaparra
2011). The work in (Xu et al. 2017) first relaxes the origi-
nal ”static and pre-known goal” assumption and orients the
knowledge generated by goal recognition system into the
decision-making process of the interdictor. However, their
work does not learn the evader behavior from data and thus
neglects the existence of preference and variability in human
behaviors.

Our results show that the learned opponent behavior
model has higher tracking accuracy and results in more ef-
fective network interdiction than other models. Besides, IRL
method also gives better generalization ability to the behav-
ior model as its feature-based reward structure could be ex-
tended to areas the evader has not visited or other maps.

Background and Related Work
IRL-based Human Behavior Modeling
Machine learning methods, including reinforcement learn-
ing (RL) (Yue et al. 2016), deep learning (Min et al. 2014;
Bisson et al. 2015) and IRL (Tastan et al. 2012), have al-
ready been applied in learning the agents’ behavior models
for goal and plan recognition. Among these approaches, RL
and IRL both focus on the reward or cost of agent behav-
iors, and have better generalization ability compared with
supervised or unsupervised learning methods. Compared to

RL whose reward function has to be designated manually
by human experts, IRL further relaxes the existence of this
function and takes the preference and variability of human
behaviors into consideration. The most notable series of ap-
plications of IRL is the autonomous helicopter aerobatic
demonstrations (Abbeel et al. 2007), as well as automated
car driving simulator that can learn different driving styles
(Abbeel and Ng 2004). Recently, IRL has also been applied
in human behavior learning and modeling, as in the pedes-
trian intentions prediction in a robot application (Ng et al.
2000) and a user simulation database for dialogue (Chan-
dramohan et al. 2011). Tasten et al. (Tastan et al. 2012) also
use IRL to learn opponents behavior and intercept them in
first person shooter games. In this paper, the Maximum En-
tropy IRL (Ziebart et al. 2008), a feature-based model is
used to learn the opponent moving behavior.

Goal Recognition and Dynamic Local Network
Interdiction

As we have discussed above, plan or goal recognition prob-
lem could be formulated and addressed in many ways.
Among these approaches, two formulations solve the prob-
lem from different perspectives. One uses a pre-defined li-
brary of plans or policies; the other one replaces it by an
agent action model and a set of possible goals (Ramırez
and Geffner 2011). Apart from advantages including easy
use of existing off-the-shell planners, the latter one is also
much more flexible and expressive in representing com-
plex low-level agent behaviors, like shooting and mov-
ing. In most model-based researches (Baker et al. 2009;
Ramırez and Geffner 2011; Yin et al. 2016), posterior goal
distribution P (G|O) is usually obtained from the Bayes rule
P (G|O) = αP (O|G)P (G), where α is a normalizing con-
stant. This is also applicable for models using probabilistic
goal inference method (Yue et al. 2016).

The network interdiction problem has been examined for
several decades within the context of a variety of model-
ing approaches, optimization objectives, and solution tech-
niques. The network interdiction problem that we focus on is
frequently referred to as the Shortest Path Network Interdic-
tion (SPNI) problem. SPNI is the interdictor’s problem: sub-
ject to a limited interdiction budget, interdict arcs in a net-
work to maximize the shortest path length between specified
nodes s and t (Israeli and Wood 2002). It could be viewed as
a bilevel mixed-integer program (BLMIP), which is a special
case of a static Stackelberg game (Simaan and Cruz 1973).
Previous network interdiction researches usually neglect the
fact that, in real-life scenarios, the evader would change its
goal stochastically, or even deceptively. Using online goal
recognition, the work in (Xu et al. 2017) first relaxes this as-
sumption and studies a dynamic local network interdiction
problem. However, the evader’s behavior model that they
use during the goal inference only applies a simple distance-
base heuristic method, and thus cannot accurately reflect the
characteristics of human behaviors.

Methodology
As in Figure 1, the two blue blocks MDP-based goal recog-
nition and DLNI both formulate the second o and the third
d of observe-orient-decide-act loop, where the observe and
act are abbreviated as ”Observed Action Sequence” and ”In-
terdicted Arcs” and depicted using blue lines. The learning
process is to calculate the policy, which defines the prob-
abilistic action selection in every state for agents march-
ing for different destinations, from the opponent behavior
datasets in the form of moving trajectories. Firstly, these tra-
jectories would be preprocessed and separated into sets of
fragments according to different goals, in case of goal mid-
way changes. Then maximum entropy IRL learns the op-
ponent behavior model through weight estimation of pre-
defined behavior features, through calculating the opponent
feature count fevader, the number of times features were ob-
served in the set of trajectories. After that, reinforcement
learning algorithm would be further used to retrieve the op-
timal policy from the reward function, which is a linear form
of features and weights. Till now, all learning steps are pro-
cessed off-line. In the runtime, the opponent behavior model
would be further modified online considering environmental
changes caused by arcs interdiction.

Figure 1: The Framework of Inverse Reinforcement Learning based
Human Behavior Modeling for Goal Recognition in Dynamic Lo-
cal Network Interdiction

First and foremost, we give the problem formulation of
DLNI (Xu et al. 2017) as follows.

Problem: Maximize the expectation shortest s − g
path length in a directed network by inter-
dicting arcs,

Indices: i ∈ N , nodes in G (s is the current source
node, g1, . . . , gm are the potential termini),
k = (i, j) ∈ A, arcs in G,
k ∈ FS(i)(k ∈ RS(i)), arcs directed out
of (into) node i,
τ = 1, 2, . . . , T , stages of the confronta-
tion process,

Data: 0 ≤ ck <∞, nominal length of arc k (vec-
tor form c),

0 ≤ dk < ∞, added integer delay if arc k
is interdicted (vector form d),
rk > 0, resource required to interdict arc k
(vector form r),
R, total amount of interdiction resource,
Rτ , total amount of interdiction resource
assigned to stage τ ,
0 ≤ p(gj) < 1,

∑
j=1,···,m p(gj) = 1, the

probabilistic distribution over the possible
goals g1, · · · , gm,

Variables: xk = 1 if arc k is interdicted by the inter-
dictor; else xk = 0,
yk = 1 if arc k is traversed by the evader;
else yk = 0

The formulations is:

[DSPLNI-P] max
x∈X

min
y

∑
k∈A

(ck + xkdk)yk

∑
k∈FS(i)

yk−
∑

k∈RS(i)

yk=

{
1 for i = s
0 ∀i ∈ N\{s, g1, · · · , gm}

−p(gj) ∀i = gj , j ∈ {1, · · · ,m}
(1)

xk ∈ {0, 1}, ∀k ∈ FS(s) (2)
xk = 0, ∀k /∈ FS(s) (3)

yk ≥ 0, ∀k ∈ A (4)
where X = {x ∈ {0, 1}|A||rTx ≤ Rτ}.

IRL-based Human Behavior Modeling
Taking dynamically changing goals into considera-
tion, our goal-MDP model is defined as a tuple
⟨s0, S,G, e, A, Pa(s

′|s), O⟩, where s0 is the initial state,
S is the finite set of states, G ⊆ S is the non-empty set
of goal states, e = {0, 1} is the goal termination variable
for e = {0, 1}, A is the set of actions associated with
each state, Pa(s

′|s) is the action selection probability with
a ∈ A, s, s′ ∈ S, and O is the non-empty observation
set. Essentially, the model is a dynamic Bayesian network
(DBN), in which all causalities could be depicted. We
present a full DBN structure depicting two time slices in
Figure 2.

The learning process of IRL is based on a cycle of:
1) forward-backward passes to calculate the expected fea-
ture counts for a given set of weights, and 2) gradient-based
feature weight updates. Our method starts with collecting
observation data from a human opponent and separating tra-
jectories into several fragments by the goals, if the goal
changes in a trajectory. Given all the observed data, the goal
is to find the policy π that best matches the data under the
maximum entropy assumption.

Note that the policy depends on the reward at each step,
and the reward is assumed to be the linear of features mul-
tiplied by a weight vector: R(f , ω⃗) = ω⃗ · f . In this task we
use the following features:
• distance d to the evader’s goal;
• the value of coordinate X; and
• the value of coordinate Y .

g

a

s

o

e

Time Slice

1
g

1
a

1
s

1
o

Time Slice

1
e

1

Figure 2: The DBN structure of the model

Thus, R = ω1×d+ω2×X+ω3×Y , where ω⃗ = (ω1, ω2, ω3)
are the weights of three features.

The opponent’s policy π is defined as πω⃗ :=
P (a|s, ω⃗), where ω⃗ is given by argmaxω⃗ L(ω⃗) =∑M

m=1 logP (trajm|ω⃗). Fortunately, this function is convex
for deterministic MDPs (such as game worlds) and therefore
can be solved using gradient descent:

dL(ω⃗) = E[fevader]− E[fπω⃗
] (5)

E[fevader] is straightforward from observation data and as-
sumes Csi is the expected visiting count for si.

E[fπω⃗
] =

∑
si

Csifsi |πω⃗ (6)

The forward-backward pass algorithm for computing ex-
pected occupancy counts based on weights can be found in
(Ziebart et al. 2008). With this information we can compute
the expected feature count of the whole policy using Eq. (6).
The gradient descent method (Eq. (5)) is used to improve ω⃗
until it reaches its termination criteria.

The policy can be retrieved by calculating the value for
each state s at time t using the Bellman equation:

V (st) = max
ast

{R(st, ast) +
∑
st+1

P (st+1|st, ast)V (st+1)}

(7)
The Bellman equation formulation for value iteration pre-

sented above would give us a fixed sequence of actions for
each state that achieves the maximum value for the MDP. A
similar state-action value function Q : S × A → R, can be
defined as the expected return starting from state s, taking
action a and thereafter following policy:

Q(s, a) =
∑
s′

P (s′|st, ast)(R(s, a, s′) + V (s′)) (8)

Rather than simply choosing the maximum, humans ex-
hibit flexibility when choosing the actions, especially when
several options are all strong. To accommodate this behav-
ior, we assume that the opponent selects from a distribu-
tion of actions in each state. The distribution with max-
imum information entropy will minimize the information

loss and thus result in more human-like behavior. Thus,
rather than just selecting the action with the maximum re-
ward, the probability of an action can be weighted by the
expected exponential values P (aj |si) ∝ expQ(si, aj). The
corresponding Bellman equation assuming that the opponent
draws from distribution of actions is given in Eq. (8) where
R(s, a) = ω⃗ · f .

The process of calculating reward function using Maxi-
mum Entropy IRL is shown in Algorithm 1. After ω⃗ is ini-
tialized randomly, the fg is updated according to current state
s and goal g. Then the features are added up from behavior
trajectories. Finally, ω⃗ could be computed using the forward-
backward pass algorithm and gradient-based feature weight
updates, as in Eq. (5).

Algorithm 1: Policy Calculation under Different Goals
by Maximum Entropy IRL

1 Initialize ω⃗0 ← (ω1, ω2, ω3);
2 foreach g ∈ G do
3 fg = FeatureUnderTarget(g);
4 E[fevader] =

∑M
m=1 ftrajm ;

5 ω⃗g = MaxEntIRL(fevader, fg, ω⃗0);
6 Rg(fg, ω⃗g) = ω⃗g · fg
7 end

Dynamic Goal Recognition in DLNI
Recognizing the evader’s goal is an inference problem trying
to find the real goal behind agent actions based on observa-
tions online. In essence, the task is to compute the posterior
distribution P (gτ |oτ) of goal gτ given observation oτ . This
could be achieved either by accurate inference or by approx-
imate methods. Widely applied in sequential state estima-
tion, particle filter is a kind of approximate inference meth-
ods designed to handle non-Gaussian, nonlinear and high-
dimensional problems (Chen and others 2003). In this work,
the set of possible goals is given along with the priors P (G).
Similar assumptions also exist in (Ramırez and Geffner
2011) in which the posterior goal probabilities P (G|O)
is obtained from Bayes rule P (G|O) = αP (O|G)P (G)
where α is a normalizing constant. In particle filter how-
ever, a posterior distribution is empirically represented us-
ing a weighted sum of Np samples (Chen and others 2003)
drawn from the proposal distribution:

p(gτ |oτ) ≈
Np∑
i=1

W (i)
τ δ(gτ − g(i)τ) (9)

where g
(i)
τ are assumed to be i.i.d drawn from q(gτ |oi). The

importance weights W (i)
τ should be updated recursively

W (i)
τ ≈W

(i)
τ−1

p(oτ |g(i)τ)p(g
(i)
τ |g(i)τ−1)

q(g
(i)
τ |g(i)0:τ−1, oτ)

(10)

As we use simplest sampling, the q(g
(i)
τ |g(i)0:τ−1, oτ) is set

to be p(g
(i)
τ |g(i)τ−1), which could be computed directly using

the agent action model. Thus the gτ in Eq. (9) would be sam-
pled from p(g

(i)
τ |g(i)τ−1). As the observation oτ only depends

on sτ , the importance weights W (i)
τ can be updated by

W (i)
τ = W

(i)
τ−1 · p(oτ |s(i)τ). (11)

The process of applying IRL-assisted dynamic goal
recognition in DLNI at one confrontation stage is shown in
Algorithm 2. Variables including Q value, action selection
Policy, the adjacent matrix Adj describing current state in
a form of vertexes and arcs, feature value f and particle sys-
tem Particle serve as inputs at stage τ − 1 and outputs at τ .
In line 3 of Algorithm 2, after observing the evader’s action
at τ from environment, the goal recognition module uses the
Policyτ−1 computed at stage τ − 1 to advance the particle
system from Particleτ−1 to Particleτ . The weights are
updated using Eq. (11) by comparing the current states of
particles in Particleτ and the real observation Obs.

Algorithm 2: IRL-assisted Goal Recognition in DLNI
at confrontation stage τ

Input: Qτ−1, Policyτ−1, Adjτ−1, fτ−1, Envτ ,
Particleτ−1

Output: Qτ , Arcs,Adjτ , Policyτ , fτ , Particleτ
1 τ = τ + 1;
2 Obs = observe(Envτ);
3 (Particleτ , P (G|O)) =
goalRecognition(Particleτ−1, Policyτ−1, Obs);

4 Arcs = DLNI(Adjτ−1, P (G|O));
5 (Adjτ , fτ) = stateUpdate(Adjτ−1, Arcs, fτ−1);
6 Qτ (s, a) = computeRL(Adjτ , R(fτ), Qτ−1(s, a));

7 Policyτ = e
Qτ (s,a)

T∑
i e

Qτ (s,ai)
T

;

After that, the probabilistic distribution P (G|O) of goals
are computed according to Eq. (9). In line 4, P (G|O) along
with Adjτ−1 are fed into the DLNI module to generate the
set of arcs Arcs to be interdicted. Further, states would be
updated based on Arcs, Adjτ−1 and fτ−1. In lines 6 and 7,
we compute the Q value using reinforcement learning, and
the Policy under the maximum entropy assumption for the
next stage.

Experiments
We conducted extensive experiments on the basis of a hu-
man evader action data upon the Chicago Sketch Road Net-
work (Lunday and Sherali 2010), which consists of 933 ver-
tices and 2950 edges. We collect the moving trajectories
from the same group of subjects in an interactive environ-
ment, as shown in Figure 3 (a), generated by the Unreal
Engine 4 (Engine 2016). The human evader has one start-
ing point and three predefined possible destinations which
would be selected with equal probability at the beginning.
Along with an IRL-learned model using human behavioral
data, we give another two similar models predefined by hu-
man experts for comparison.

For the goal recognition part, we simplify the goal termi-
nation function as follows: If evader reaches its terminus,
then the goal is achieved, otherwise it changes the goal with
a probability of 0.01 for every state. The observation, con-
taining the evader’s current position, of the recognizer would
be missing with a probability of 0.2. The computation of the
SPNI is formulated into a BLMIP and solved using the MIP
solvers of CPLEX 11.5 and YALMIP toolbox of MATLAB
(Lofberg 2005). The Np of the particle system is set to 600.

Tests on IRL-based Behavior Learning
The features are used to discriminate between locations in
the environment. Based on the feature selected above, we
compute the weight values for three predefined goals, as
shown in Table 1, using the Maximum Entropy IRL in Al-
gorithm 1.

Table 1: The weights of features for different goals using IRL

Target No. Distance d X Y Precision
1 1.2 0.8 0.4 0.9290
2 1.5 0.9 0.5 0.8845
3 0.8867 0.8 1.1 0.8867

40 50 60 70 80

160

170

180

190

200

210

220

Source

Target1

Target2

Target3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: (a) The Chicago Sketch Roadmap for data collection and
algorithm tests; (b)The final value map for Target 2 computed by
reinforcement learning using IRL-generated reward

Table 1 shows that the policy learned by IRL for Tar-
get 1 is most closely related to the test trajectories, com-
pared to Target 2 and 3. This is because there exists several
non-distinctive paths for the latter two targets, which intro-
duces ambiguity not only to human observer, but also to the
IRL learner. Also, we show the final value map for Target
2 computed by reinforcement learning using IRL-generated
rewards, as shown in Figure 3 (b). These relative values are
computed using Eq. (7). They increase from blue (value 0) to
red (value 1), and show a general trend of the evader moving
from the source point to Target 2.

Further, applying the behavior model to network interdic-
tion, we can compute the change in the Q value for each
fixed vertex according to Eq. (8), after its neighboring edges
are interdicted as shown in Figure 4. We select the index
No.572 vertex at the position (68, 189) to analyze, and know
Target 2 is located in the east of this mini-map in advance.
The relative Q values for No.572’s neighboring vertices,
which represent the set of evader’s possible action selec-
tions and are connected using bold lines, are shown in the

white boxes. Figure 4 (a) shows the original values before
network interdiction. After the edge, labeled in the middle
by a solid square as shown in Figure 4 (b) along the ver-
tex No.572 and 573, is interdicted, relative Q values change
accordingly. Specifically, among 7 neighboring vertices, the
relative Q values increase at No.576, No.637, No.569 and
No.570, and decrease at No.26 and No.571. Though the rel-
ative value for vertex No.573 is still the highest, its real
value decreases after the interdiction, as the total increased
Q value of 4 vertices is higher than that of the decreased
value. This is because the interdiction increases the cost for
evader to traverse from No.572 to Target 2 taking actions to
No.573. This also explains the relative value changes for the
other 6 vertices.

66.5 67 67.5 68 68.5 69 69.5 70 70.5
187.5

188

188.5

189

189.5

190

190.5

191

0.8
vertex No.26

0.52
vertex No.5690.28

vertex No.570

0.16
vertex No.571

1
vertex No.573

0.68
vertex No.576

0
vertex No.637

0.8
vertex No.26

vertex No.572

66.5 67 67.5 68 68.5 69 69.5 70 70.5
187.5

188

188.5

189

189.5

190

190.5

191

0.76
vertex No.26

0.64
vertex No.5690.4

vertex No.570

0
vertex No.571

1
vertex No.573

0.88
vertex No.576

0.12
vertex No.637

0.76
vertex No.26

vertex No.572

(a) relative Q value before (b) relative Q value after

Figure 4: Relative Q value for action selections changes at vertex
No.572 before and after network interdicted (Knowing the final
goal Target 2 locates in the east of this mini-map)

Tests on Goal Recognition-assisted DLNI
In this test, we first verify the effectiveness of IRL learned
behavior model in goal recognition, using the dataset from
the same group of subjects. Then we test the overall perfor-
mance of Algorithm 2 in DLNI problem. The dataset con-
sists of 100 labeled traces with each one possessing an av-
erage of 20.65 steps. There are approximately 19% traces
where the evader’s goal is changed at least once during half
way. To show the details of goal recognition results using
IRL learned behavior model, and especially in a situation
where the goal has been changed midway, we select the first
trace that has goal changes as an example, which is trace
No.9, as shown in Table 2.

Table 2: The details of No.9 goal-changing trace

Trace No. Duration Targets Goal Interrupted

9 τ ∈ [1, 7] Target 1 Yes
τ ∈ [8, 20] Target 3 No

As shown in Table 2, the evader in trace No.9 selected
Target 1 to be its first terminus before changing it to Tar-
get 3 at τ = 8, and eventually reaching the goal at τ = 20.
Recognition results are shown in Figure 5 (d). The proba-
bility of the real goal Target 1 increases quickly during the
initial period. When the goal changes at τ = 8, our method
responds very quickly and the correct estimate is maintained
until the end. Further, we compare the performance of goal

recognizers using different behavior models in Figure 5(a-
c) by statistic metrics of precision, recall and F-measure,
which are frequently used to measure overall accuracy of
the recognizer (Sukthankar et al. 2014). To evaluate traces
with different lengths, the paper applies the method in (Yue
et al. 2016), and partitions the traces into k stages. The
weights of the other two cases are ω⃗1 = (0.1, 1.0, 1.0) and
ω⃗2 = (1.0,−1.0,−1.0) respectively. The goal recognizer
using IRL learned model has a faster reaction time and per-
forms the best till the end in all three metrics.

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
r
o
b
a
b
i
l
i
t
y

IRL
w

1
=0.1,w

2
=1,w

3
=1

w
1
=1,w

2
=−1,w

3
=−1

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
r
o
b
a
b
i
l
i
t
y

IRL
w

1
=0.1,w

2
=1,w

3
=1

w
1
=1,w

2
=−1,w

3
=−1

(a) Precision (b) Recall

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
r
o
b
a
b
i
l
i
t
y

IRL
w

1
=0.1,w

2
=1,w

3
=1

w
1
=1,w

2
=−1,w

3
=−1

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stage

P
r
o
b
a
b
i
l
i
t
y

Target1
Target2
Target3

(c) F-measure (d) Trace No.9

Figure 5: The comparison of goal recognizer using different behav-
ior models and the performance of recognizing trace No.9 using
IRL-assisted goal inference

Finally, we test the overall performance of Algorithm 2 in
the DLNI problem, as shown in Figure 6, which compares
the original static MXSP solver with DLNI solvers using dif-
ferent behavior models, i.e., IRL learned model (DLNI-IRL)
and models (DLNI-R1 and DLNI-R2) with human specified
ω⃗1 and ω⃗2. The DLNI solver using IRL learned behavior
model performs best.

2.2x103

2.4x103

2.6x103

In
te

rd
ic

te
d

Le
ng

th

DLNI-R2DLNI-R1 DLNI-IRLMXSP
1.4x103

1.6x103

1.8x103

DLNI-R2DLNI-R1 DLNI-IRLMXSP

In
te

rd
ic

te
d

Le
ng

th

(a) Goal Unchanged (G1) (b) Goal Changed Once (G1 to G2)

Figure 6: Comparison of shortest path maximum length using static
MXSP solver and DLNI solvers with different behavior models
(G1=Target 2, G2=Target 3, tchange=10).

Conclusion
The paper proposes an Inverse Reinforcement Learning
(IRL)-based opponent behavior modeling method, and suc-
cessfully applies it in the goal recognition assisted Dynamic
Local Network Interdiction (DLNI) problem. Experimental
results indicate that our learned behavior model has a higher
tracking accuracy and yields better interdiction outcomes
than other models.

Acknowledgments
The work is sponsored by the National Natural Science
Foundation of China under Grants No.61473300.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
page 1. ACM, 2004.
Pieter Abbeel, Adam Coates, Morgan Quigley, and An-
drew Y Ng. An application of reinforcement learning to
aerobatic helicopter flight. In Advances in neural informa-
tion processing systems, pages 1–8, 2007.
Dorit Avrahami-Zilberbrand and Gal A Kaminka. Fast and
complete symbolic plan recognition. In IJCAI, pages 653–
658, 2005.
Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum.
Action understanding as inverse planning. Cognition,
113(3):329–349, 2009.
Francis Bisson, Hugo Larochelle, and Froduald Kabanza.
Using a recursive neural network to learn an agent’s deci-
sion model for plan recognition. In IJCAI, pages 918–924,
2015.
Hung Hai Bui, Svetha Venkatesh, and Geoff West. Policy
recognition in the abstract hidden markov model. Journal of
Artificial Intelligence Research, 17:451–499, 2002.
Paola Cappanera and Maria Paola Scaparra. Optimal al-
location of protective resources in shortest-path networks.
Transportation Science, 45(1):64–80, 2011.
Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefevre, and Olivier Pietquin. User simulation in dialogue
systems using inverse reinforcement learning. In Inter-
speech 2011, pages 1025–1028, 2011.
Zhe Chen et al. Bayesian filtering: From kalman filters to
particle filters, and beyond. Statistics, 182(1):1–69, 2003.
Unreal Engine. Unreal engine 4. Unity3D Engine, 2016.
Christopher W Geib and Robert P Goldman. Plan recog-
nition in intrusion detection systems. In DARPA Informa-
tion Survivability Conference & Exposition II, 2001. DIS-
CEX’01. Proceedings, volume 1, pages 46–55. IEEE, 2001.
Andreas G Hofmann and Brian C Williams. Intent recogni-
tion for human-robot interaction. In Interaction Challenges
for Intelligent Assistants, pages 60–61, 2007.
Eitan Israeli and R Kevin Wood. Shortest-path network in-
terdiction. Networks, 40(2):97–111, 2002.

Gilbert Laporte, Juan A Mesa, and Federico Perea. A game
theoretic framework for the robust railway transit network
design problem. Transportation Research Part B: Method-
ological, 44(4):447–459, 2010.
Lin Liao, Donald J Patterson, Dieter Fox, and Henry Kautz.
Learning and inferring transportation routines. Artificial In-
telligence, 171(5-6):311–331, 2007.
Diane J Litman and James F Allen. A plan recognition
model for subdialogues in conversations. Cognitive science,
11(2):163–200, 1987.
Johan Lofberg. Yalmip: A toolbox for modeling and op-
timization in matlab. In Computer Aided Control Systems
Design, 2004 IEEE International Symposium on, pages 284–
289. IEEE, 2005.
Brian J Lunday and Hanif D Sherali. A dynamic network
interdiction problem. Informatica, 21(4):553–574, 2010.
Wookhee Min, Eunyoung Ha, Jonathan P Rowe, Bradford W
Mott, and James C Lester. Deep learning-based goal recog-
nition in open-ended digital games. AIIDE, 14:3–7, 2014.
Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, pages 663–670, 2000.
David V Pynadath and Michael P Wellman. General-
ized queries on probabilistic context-free grammars. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(1):65–77, 1998.
Miquel Ramırez and Hector Geffner. Goal recognition over
pomdps: Inferring the intention of a pomdp agent. In IJCAI,
pages 2009–2014. IJCAI/AAAI, 2011.
Maria P Scaparra and Richard L Church. A bilevel mixed-
integer program for critical infrastructure protection plan-
ning. Computers & Operations Research, 35(6):1905–1923,
2008.
Marwaan Simaan and Jose B Cruz. On the stackelberg strat-
egy in nonzero-sum games. Journal of Optimization Theory
and Applications, 11(5):533–555, 1973.
Gita Sukthankar, Christopher Geib, Hung Hai Bui, David
Pynadath, and Robert P Goldman. Plan, activity, and intent
recognition: Theory and practice. Newnes, 2014.
Bulent Tastan, Yuan Chang, and Gita Sukthankar. Learn-
ing to intercept opponents in first person shooter games. In
Computational Intelligence and Games (CIG), 2012 IEEE
Conference on, pages 100–107. IEEE, 2012.
Kai Xu, Kaiming Xiao, Quanjun Yin, Yabing Zha, and
Cheng Zhu. Bridging the gap between observation and de-
cision making: Goal recognition and flexible resource allo-
cation in dynamic network interdiction. In IJCAI, 2017.
Quanjun Yin, Shiguang Yue, Yabing Zha, and Peng Jiao. A
semi-markov decision model for recognizing the destination
of a maneuvering agent in real time strategy games. Mathe-
matical Problems in Engineering, 2016, 2016.
Shiguang Yue, Kristina Yordanova, Frank Krüger, Thomas
Kirste, and Yabing Zha. A decentralized partially observ-
able decision model for recognizing the multiagent goal in
simulation systems. Discrete Dynamics in Nature and Soci-
ety, 2016, 2016.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and
Anind K Dey. Maximum entropy inverse reinforcement
learning. In AAAI, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.

