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Abstract

We propose a new probabilistic plan recognition algorithm
YR based on an extension of Tomita’s Generalized LR (GLR)
parser for grammars enriched with the shu✏e operator. YR
significantly outperforms previous approaches based on top-
down parsers, shows more consistent run times among sim-
ilar libraries, and degrades more gracefully as plan library
complexity increases. YR also lifts the restrictions on left-
recursion imposed by approaches based on top-down pars-
ing algorithms. We further propose that context-free shuf-
fle grammars, more than traditional context-free grammars,
should be seen as the appropriate analogue of HTN plan li-
braries in the correspondence of plan recognition and parsing.

1 Introduction

The connection between parsing and HTN plan recognition
is well-established, but the mismatch between them is hard
to ignore: plan recognition algorithms deal with multiple
top-level goals, concurrent interleaving subgoals, and rich
probability models unaddressed by parsing algorithms. So
one can adopt a parsing algorithm directly, and severely re-
strict the plans and observations which can be recognized,
or one can adopt an algorithm which bears only passing re-
semblance to known, proven parsers. Here we propose a
new plan recognition algorithm at the same time as a new
characterization of the relationship between parsing and plan
recognition. Previous work imagined a link between plan
recognition algorithms and parsing algorithms for context-
free grammars (CFGs). However this choice of CFGs as an
analogue is exactly the mismatch: the appropriate analogue
is context-free shu✏e grammars (CFSGs), CFGs enriched
with a shu✏e operator. Shu✏e operations combine strings
so that the order of symbols from each string is preserved,
but interleaving of the shu✏ed strings is possible. For ex-
ample, both m12np3r45 and mn123pr45 are shu✏ings of
mnpr and 12345, but mp12nr345 is not because the n and p
occur in a di↵erent order.

In this paper we show how a plan recognition algorithm
based on CFSG parsing provides significant improvements
over previous HTN plan recognition approaches. Much of
the improvement derives from adapting LR parsing tech-
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niques. An algorithm like Yappr will start from an in-
tended goal, first decompose it into subgoals, and then match
expected against actual observations. Our algorithm YR
avoids creating such separate internal explanations for a
single partition of observations among distinct intentions,
reducing the search space when considering each succes-
sive observation. Moreover, plan recognizers based on top-
down parsers inherit the restrictions that these parsers place
on their grammars. Transforming grammars/plan libraries
around these restrictions (Geib and Goldman 2010, for ex-
ample) can introduce an obfuscatory gap between the li-
braries designed by a user and those recognized by the sys-
tem. Bottom-up parsers do have some restrictions, but in-
clude a much greater share of practical grammars.

Many earlier parsing-based approaches to plan recogni-
tion restricted partially-ordered plans, interleaving multiple
intentions, and/or did not address relative probabilities of
intended goals (Avrahami-Zilberbrand and Kaminka 2005;
Bui, Venkatesh, and West 2002; Kaminka, Pynadath, and
Tambe 2002; Kautz 1991; Vilain 1991; Pynadath and Well-
man 2000; Huber, Durfee, and Wellman 1994). Geib and
Goldman’s PHATT (2009) was the first to impose no such
restrictions; Yappr (Geib, Maraist, and Goldman 2008) sub-
sequently refined PHATT for significant performance gains.
Geib’s ELEXIR (2009) o↵ered further performance im-
provements but requires more detailed plans than simple
HTNs to enable early commitment to goals. Ramı́rez and
Ge↵ner propose a di↵erent, domain-theoretic approach to
plan recognition (2009) whose performance is compara-
ble to Yappr’s (Stoutenburg Tardieu 2015). More recently
Mirsky and Gal proposed SLIM, which combines bottom-
up and top-down techniques (2016).

In Section 2 we present background information on plan
libraries, plan recognition, parsing and the shu✏e operator.
In Section 3 we present the YR plan recognition algorithm.
In Section 4 we consider YR’s theoretical and experimental
performance. Finally in Section 5 we conclude.

2 Background

2.1 Plans and plan recognition

We consider this formal language of plans and plan libraries:
Definition 1 A plan library is a tuple (⌃,NT ,R, P) where ⌃
and NT are disjoint finite alphabets respectively of terminal
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events and nonterminal goals; R ✓ NT is the set of root or

intendable nonterminal goals; and P is a set of production

rules of the form (n, �,<) where n 2 NT, � is a string of

symbols in ⌃ [ NT where either |�| = 1 and � ✓ ⌃ or |�| > 1
and � ✓ NT, and < is an antisymmetric relation over the

indices [1, |�|] into �.

This formulation is equivalent to similar grammar-based ap-
proaches to HTN plan recognition (Geib, Maraist, and Gold-
man 2008; Geib and Goldman 2009), with the superficial
change of representing disjunctive rules as several di↵erent
rules for the same goal. It di↵ers from traditional HTNs
where an arbitrary condition determines the applicability of
each rule (Ghallab, Nau, and Traverso 2004); this formula-
tion is equivalent to HTN formulations without these condi-
tions. A frontier is a set indexing subgoals of a rule yet to be
achieved: for a rule (M, �,<), any F ✓ {1, · · · , |�|} where if
x 2 F and x < y then y 2 F as well. The initial frontier of a
rule (M, �,<) is just the set of all indices into �. The inser-

tion points of a frontier are those not blocked by an ordering
requirement.

A probabilistic plan recognizer generates explanations on
which we make probabilistic queries; the typical query is the
probability that a particular goal is being pursued under the
given observations. Following Geib and Goldman (2009)
we calculate this query as:

P(G|obs) =
P

e2Expls(obs),G2e P(e
i

^ obs)
P

e2Expls(obs) P(e ^ obs)
(1)

where Expls(obs) is the recognizer’s set of explanations for
the given observations, and G 2 e qualifies that the goal G is
intended under explanation e. Calculating these P(e

i

^ obs)
relies on the model introduced by Goldman et al. (1999). We
enrich the plan library with:
1. The probability P(G) that a particular goal G is intended

for its own sake.
2. The probability of choosing a particular alternative when

there are several production rules for the same goal, which
gives the probability P(plan) that a particular plan will be
used to achieve a given goal.

3. The probability P(s|S ) that the agent will choose a par-
ticular primitive action s from a set of pending primitive
actions S at some point in plan execution, which gives the
probability of a particular ordering of observed actions.

Then to calculate Equation 1 we quantify these factors,

P(e ^ obs) = k ·Q
G

P(G)|Ge

| ·Q
plan2e P(plan) (2)

·Q
i

P(obs

i

|obs0, · · · , obs

i�1) .

|G
e

| is the number of distinct plans achieving G which the
explanation identifies, and k is a factor accounting for no
further plans achieving G being pursued. For simplicity in
this presentation we assume that the latter two probabilities
are uniform distributions, but nothing in the YR algorithm
prevents a more complicated model. A noteworthy compli-
cation of calculating the P(obs

i

|obs0, · · · ) is that it changes
when we discover additional intentions. We cannot preemp-
tively weigh pending actions for the new intention. So we
store a pending stack describing the entire series of pending

sets rather than only the most recent set. Often one simpli-
fies the probability model by declaring all members of each
pending set to be equally likely; in this case we must store
only the sets’ sizes, not the sets themselves.

2.2 LR and GLR parsing

The similarity in structure between plan libraries and
context-free grammars is clear. Grammars have a single
start symbol where plan libraries have multiple top-level
intentions; grammar rules are totally ordered, where plan
rules may be partially ordered or unordered.

Definition 2 A context-free grammar (CFG) is a tuple

(NT ,⌃,R, S ) where ⌃ and NT are disjoint finite alphabets

respectively of terminals and nonterminals; S 2 NT is the

start symbol; and R is a set of production rules (A, u) where

A 2 NT, and u is a string of symbols in ⌃ [ NT.

We write the pair (A, u) as the more intuitive A! u. An item

represents the state of matching inputs against a rule. Items
for a rule are written by adding a dot at a position in the
rule’s right-hand side; a rule of length n will give rise to 1+n

items. The initial item of a rule with A ! u is A ! •u. In
building a parser it is typical to select a nonterminal S

0 and
a terminal $ which are not part of the original grammar, and
extend the grammar with those symbols and the production
rule (S 0, S $). The $ represents the end of input, and the
additional rule makes the success condition for the parser
unambiguous.

Our summary of LR parsing largely follows Grune and
Jacobs (2008). We focus specifically on LR(0) parsing; un-
like parsing an entire given string, in plan recognition we
cannot expect knowledge of an agent’s future actions ahead
of time! The core of an LR parser is some technique for
finding the next handle, a segment of the string which can
be reduced to a particular nonterminal. E�cient parsing re-
quires e�cient handle-finding; we use a deterministic finite
automaton (DFA). The automaton is more easily understood
as a nondeterministic finite automaton (NFA), which is then
trivially translated to a DFA. The NFA has as its states both
individual items, plus one additional state for each nonter-
minal, the station of that nonterminal. The NFA’s initial
state is the station for the extending nonterminal S

0. There
are three sources of transitions in the NFA: From an item
A! u • av (where a is either a terminal or nonterminal, and
for any strings u and v) there is a transition labeled a to item
A! ua • v.1 Moreover from every item A0 ! u • A1v there
is an "-transition to the station for A1. Finally, for each rule
A! u there is an "-transition from A’s station to each initial
item A! •u of a rule for A. The DFA corresponding to this
NFA becomes the basis for the parser’s control tables. The
states of the DFA are typically numbered rather than labeled
with item sets, the initial state taking the lowest number.

1Although we do not explore the additional bookkeeping re-
quired in the parsing algorithm here, additionally including "-
transitions from A ! u • av to A ! ua • v for certain terminal
a would give a simple extension for the case where a is present
but not observed. Likewise, additional a-labeled transitions from
A! u • av to itself model false observations.



From the handle-finding DFA we can construct parser ac-
tion tables. Table columns correspond to symbols; table
rows correspond to item sets; and each entry contains zero or
more actions. Starting with initially no actions we populate
the table according to three rules,
1. If the DFA contains a transition s1 �!

a

s2 for a 2 ⌃, then
we add shift s2 to row s1, column a.

2. If a state s contains an item A ! u• for A 2 NT (so not
S

0), we add reduce A! u to every column in row s.
3. If a state s contains S

0 ! S • $ for the S

0, $ < NT [ ⌃,
we add accept to row s, column $.

An entry with more than one action is a conflict: a shift-

reduce conflict when both a shift and one or more reduce
actions are present, or a reduce-reduce conflict when two or
more reduce actions are present. An entry with no actions is
taken to be a shift to some error state.

For tables with no conflicts, LR(0) parsing is a straight-
forward reading of the transition tables in a push-down au-
tomaton: the initial stack holds the initial row number (or
item set). Parsing involves iterating through the following
loop:
• First we pop the next input symbol s

• While the action table has an entry reduce A ! u at the
row for the state on top of the stack, column s:
– First we pop |u| elements from the stack.
– The row now atop the stack will have a shift entry for

column A, and we push the indicated state onto the
stack.

• Then we consider the entry reduce A ! u at the row for
the state on top of the stack, column s:
– If it is the action shift s

0 then we push s

0 onto the top of
the stack.

– If it is accept, then we terminate successfully.
If at any point we have an error state at the top of the stack,
parsing fails.

When there are conflicts in the parser table, the LR al-
gorithm is correct but becomes nondeterministic, since any
choice of actions leading to the accept state does still signify
that a string is in the language generated by the grammar.
GLR and similar approaches structure a breadth-first search
over such choice points (Tomita 1985; Tomita and Ng 1991).
Conceptually GLR keeps a separate stack for each possi-
ble action, deriving one set of stacks from another at each
step. Individual stacks with no shift transition are simply
discarded; parsing fails only when the set of current stacks
becomes empty. Of course, the naı̈ve implementation which
copies the stack upon each ambiguity is absurd; GLR relies
on two essential optimizations for its performance. The first
optimization creates a tree-structured stack: rather than du-
plicating the entire stack at each conflict, we share the stack
prefix among the several alternatives. The second optimiza-
tion then gives us a graph-structured stack sharing graph
su�xes as well: the shift and reduce actions for a single
input symbol will collectively create at most one node for
each table row, possibly sharing each new node among sev-
eral previous stack tops. Future operations to these shared
su�xes are common to all relevant stacks until a reduce step

pops past the merge point. As transient as the shared su�xes
can be, the optimization is nonetheless crucial to GLR’s per-
formance; although GLR’s worst-case performance is expo-
nential compared to the size of its grammar, this worst-case
behavior arises only for very artificially ambiguous gram-
mars. For grammars with limited ambiguities, GLR is nearly
linear and represents the state of the art of parsing (Grune
and Jacobs 2008, Sec. 11.3).

2.3 The shu✏e operator

Although shu✏ing has long been an aspect of concurrent
systems analysis, it is only in recent years a theory of lan-
guages with shu✏ing has developed (Restivo 2015). Much
of the work to date focused on theoretical properties of lan-
guage classes; practical approaches have been limited to
regular expressions and languages with shu✏ing (Sulzmann
and Thiemann 2015; submitted 2016). Recently we pro-
posed GLR-S, an extension of GLR for CFSGs (2016), and
o↵er a proof of its correctness. The shu✏e operator is dis-
tinct from ID/LP grammars, which also relax the total order
constraints on the right-hand sides of production rules (sepa-
rating immediate dominance ID from linear precedence LP).
However ID/LP grammars only allow reordering of the sym-
bols of a rule’s right-hand side at the point where the symbol
at the left-hand side is expanded; no subsequent shu✏ing of
the expansions of the symbols of the right-hand side is al-
lowed. Shieber shows that an ID/LP grammar can always be
converted to an equivalent CFG (1984), while context-free
languages are not closed under shu✏e.

CFGSs di↵er simply by allowing rules of the form A !
A1kA2k · · · kAn

. Where each A

i

rewrites to u

i

2 ⌃⇤, A rewrites
to any shu✏ing of the u1, . . . , un

. GLR-S extends the core
(nondeterministic) LR algorithm in four steps: extending
first the notion of an item, then the handle-finding NFA, then
the construction of the action table, and finally updating the
processing of new action table entries. We describe each of
these steps, and then the optimizations to the deterministic
generalized algorithm.

GLR-S adds two sorts of items to the classical notion.
Corresponding to a shu✏e rule, there are items A !
•{A1, · · · , An

}
m

and a ! {A1, · · · , An

}
m

•. Here m is an in-
teger set to the initial number of shu✏ed subterms, serv-
ing the same role in reduction as the length of right-hand
rule sides in the case of sequential rules. In addition to
stations there is a placeholder item rA representing a tran-
sition to the subtask of recognizing a particular shu✏ed
substring. For the handle-finding NFA there are additional
transitions corresponding to the new items. From an item
A ! •{A1, . . . , An

}
n

and for each i there is a transition la-
beled A

i

to A ! •{A1, . . . , Ai�1, Ai+1, . . . , An

}
n

, plus an ✏-
transition from any A ! •{}

n

to A ! {}
n

•. GLR-S anno-
tates the NFAs with hyperedges linking from one state to
several. Specifically the graph of states and edges forms an
arc-labeled F-directed hypergraph (Gallo et al. 1993). Of
course the hyperedges have no impact on the operation of
an NFA (and in any event one does not “run” the handle-
finding automaton in any real sense). Our interest in the
hyperedges is strictly for accounting: translating them to
the DFA and generating action table entries based on them.



Where there is such an edge from an item I to items I

i

in the NFA, we expect that any state containing I in the
DFA would have a similar hyperedge to the least sets con-
taining the I

i

. From the initial item a ! •{A1, . . . , An

}
n

of a shu✏e node we add a hyperedge to the n indirection
items rA1, · · · ,rA

n

; from each indirection item rA

i

we
have an ✏-transition to the station for A

i

. The hyperedges
have their own translation to the action table; for each hy-
peredge S ! S1, · · · ,Sn

and simple edge S
i

�!
s

S0
i

where
s 2 ⌃, the action subs(S

i

! S0
i

;S1, · · · ,Si�1,Si+1,Sn

) is
added to the table at row S0, column s.

The runtime state of the core nondeterministic GLR-S al-
gorithm is a cactus stack — a tree which grows and shrinks
at the leaves — of states from the handle finding DFA. We
write � : S to name a stack top � containing the state S.
Figure 1 shows the core nondeterministic GLR-S algorithm.
Step 1(c) of the algorithm shows the purpose of the rA

nodes. The reduce operations in LR parsers rely on the num-
ber of states pushed onto the stack for the right-hand side of
a rule being the same as the length of that right-hand side.
But when splitting the stack for shu✏ed substrings, the sub-
stacks start with an initial state that does not correspond to
any recognized symbol. The presence of an indirection to
rA in an item set allows the parser to detect and correct this
o↵set. But since the rA item would not appear in the state
corresponding to a sequential use of A — which would fol-
low an ✏-link to A’s station instead of to rA — there is no
disruption to stack operations in sequential cases.

GLR-S adopts the graph-structured stack, but the mid-
stack mutation performed at Step 1.(e).i of the algorithm
complicates its use. In the nondeterministic parser it is sim-
ple enough to mutate the middle of a stack, but not all of
the stacks superposed in graph-structuring will undergo the
same mutations. To store stacks a deterministic implemen-
tation of GLR-S uses not one but two graphs, distinguished
as upper and lower. The lower graph holds parser states as
in Tomita’s graph-structured stack, but disconnected at the
junctions arising from shu✏e operations. The relationship
between these graph fragments, as well as the sets of stack
tops, are maintained in the upper graph. The upper graph
has the structure of an and/or tree, possibly with shared sub-
structure. Or-nodes reflect di↵erent possible parses; and-
nodes organize recognition of shu✏ed substrings. To chain
together substacks in the lower graph, we bind controllers in
and-nodes, and reference both a stack top and one of these
controllers in each leaf node. The binding of a controller in
an and-node associates the controller with both a prior stack
top, and a parent controller. So essentially the controllers
form a linked tree of stacks from the lower graph, which
taken together assemble the cactus stacks of the nondeter-
ministic algorithm. Separating the binding of a controller to
a parent stack top from the stack tops in leaf nodes in this
way allows local mutation of controller bindings in a way
that restricts the scope of the e↵ect.

So for each input symbol, GLR-S traverses the upper
graph, constructing a new upper graph while reusing as
much of the previous graph as possible. When traversing
an or-node one discards any children for which there is no

Algorithm: Core GLR-S parsing. Initially the single state on the
stack is the DFA’s initial state. For each symbol s of the input string
including the end-of-string marker $:

1. For each reducible stack top ↵ : S, if reducea! u• 2 S, then
we may choose to reduce that rule:

(a) Drop ↵ as a stack top.
(b) Pop |u| nodes from ↵ to node ↵0.
(c) If ↵0 : S0 contains the indirection node for a, ra 2 S0, pop

one additional time to ↵00, else take ↵00 to be just ↵0.
(d) Let ↵00 : S0, and choose some shift operation shift(S00) from

row S0, column a, or raise an error if there is no possible
shift. Create � : S00 with parent ↵00.

(e) If ↵00 has other child nodes:
i. Then update the other children of ↵00 to have � as their

parent.
ii. Else take � as a stack top.

2. Choose a stack top ↵ : S with a stack or accept operation in row
S, column s (or reject if there is no such ↵), and choose one of
those operations.
(a) If the operation is accept, then the parser accepts the string.
(b) If the operation is shift(S), then create � : S0 with parent ↵,

and replace ↵ as a stack top with �.
(c) If the operation is subs(S0 ! S00;S1, · · · ,Sn

), then create
�

i

: S
i

with parent ↵ for each 0  i  n, and moreover create
�00 : S00 with parent �0. Replace ↵ as a stack top with �00 and
the �1, · · · , �n

.

After the end-of-string marker $ if we have not accepted the input,
then we reject it.

Figure 1: The core GLR-S nondeterministic parsing algo-
rithm.

way to advance with the next input. An and-node requires
exactly one of its children to advance for each input symbol;
if more than one can advance, then there will be a disjunc-
tion for each possible evolving child, with the other child
graphs in each case unchanged. The usual shift and reduce
operations apply at leaf nodes. When a reduce operation ex-
hausts a stack via Step 1(c) of the algorithm, GLR-S updates
the controller binding, possibly to a disjunction of several
di↵erent bindings. In each traversal GLR-S preserves the
shared structure of the upper graph by caching a map from
old upper graph nodes to new, thus traversing each shared
subgraph once only.

3 From shu✏e parsing to plan recognition

With CFSGs rather than CFGs as an analogue, we have a
much closer connection between plans and grammars. But
the match is not perfect: first, the partial order of HTN plans
is more expressive than the ordering allowed under CFSGs.
In HTN plan recognition there may be multiple active goals
drawn from multiple top-level intentions, whereas in parsing
there is a single instance of a unique start symbol. There
is not necessarily a terminator $ to the observed actions for
each plan. And finally, we are interested in probabilistic plan
recognition. We consider these issues in turn in this section,
and additionally consider the issue of evaluating explanation
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Figure 2: Portion of the handle-finding DFA for a library
containing Plan A of Section 3.

probabilities.
The partial order among HTN plan steps is more expres-

sive than the the total-or-no order of CFSGs. For example,
a plan for A involving five steps L,M,N, P,R may require
M < P, N < R and both M,N < L. This ordering cannot
be expressed with the tools of a CFSG. However the imple-
mentation in YR is straightforward. In cases where a new
concurrent subgoal becomes unblocked by the completion
of an existing subgoal, we add additional hyperedges to the
handle-finding automaton from states where the one of new
concurrent subgoals may first be oberved. To illustrate with
A, let us assume that m is a possible first observation towards
M, n towards N, and so on; we use overbars to indicate sub-
terms of a shu✏e item which are “blocked” by ordering con-
straints, as in A ! •{M,N, L̄, P̄, R̄}5. So the handle-finding
DFA for A’s library would include the fragment shown in
Figure 2 and the action table would include rows as shown
in Table 1.

In a sense it is trivial to address the multiple top-level
goals of HTNs; in the handle-finding NFA we can simply
take the stations of all of these goals to be initial in the NFA,
such that all of their initial items are in the DFA’s initial
state. We can also admit multiple intentions with ease, as
a top-level set of concurrent states with interleavable obser-
vations. Whenever YR address a new observation, it is al-
ways an option to start a new substack from the initial state,
perhaps in addition to the possibility of advancing the previ-
ously existing stacks. By allowing these new goals to re-use
lower graph structure, YR further optimizes space. The lack
of a terminator is not a problem per se; we simply do not
generate the additional wrapping rule. A long-running plan
recognizer will need some mechanism to detect and retire
long-satisfied goals, but this question is separate from the

scope of this work.

Probabilities. Our model of HTN plan recognition prob-
abilities contains three distinct sources of probability infor-
mation, and we account for each in YR. In top-down meth-
ods such as Yappr, the intended goal behind any particu-
lar explanation is clear since each explanation begins with
the hypothesized intention. But in a bottom-up method one
state may correspond to multiple alternative intended goals.
Di↵erent transitions may be possible under di↵erent goals,
which in turn gives di↵erent values for P(obs

i

|o0, . . . oi�1) in
Equation 2 for di↵erent intentions. For this reason, in the
handle-finding NFA for YR it is necessary to annotate items
with an intention. Each state (each item set) can then be
associated with the union of the goals annotating its items.
These goal sets give us not only the base probability of the
intention behind an explanation, but as we will see below
they are essential for discerning the pending sets of possible
actions.

The second aspect of probability information from HTN
plan recognition models is that associated with di↵erent
ways for achieving a goal. These are just the same as in
probabilistic CFGs, and we can use similar techniques, such
as of Wright and Wrigley (1991). We have a probability
associated with each action table entry, and a running prod-
uct at each stack top. When the stack corresponding to one
of several shu✏ed strings is exhausted and the controller’s
stack top is advanced, the probability associated with the
exhausted stack is merged (multiplied) into the controller as
well. Both the intention annotations and the incorporation
of probabilities in the parser table tends to increase the size
of the tables, but in practical plan libraries the increase is not
prohibitive, as we discuss in Section 4.

The final aspect of the HTN probability model is the se-
lection of one particular action from the several which may
be available at any one time. The compression of inten-
tions and explanations which comes with the bottom-up LR
style also impacts our access to pending sets. Since the
parser states can correspond to multiple intentions, and since
within an item set certain intentions may be relevant to only
a subset of items, we populate the pending stack with item
sets (or their indices). Even in the case where we deem all
pending set members to be equally likely, in general we can
fix the size of the pending sets only when considering one
single intention at a time. So when we traverse the upper
graph, we record the parse state number into the pending
stack. Then when we later hypothesize a particular goal for
an intention, we can translate this stack into the number of
actions available at each step.

One complication would arise from adopting a stack
structure with one entry per observation: we cannot re-use
upper graph fragments from observation to observation if
we represent them as a simple stack. The stack of every

leaf node would then need to be updated for each observa-
tion, even when a leaf continues to reference the same lower
graph node. In these cases the same actions are possible, so
the state numbers added to a naı̈ve stack would be the same
as the current top-of-stack value. We can take advantage of



State M N P m n l r p
1 shift 2 subs(5!7;6) subs(6!8;5)
2 shift 3 subs(13!14)
3 shift 4 subs(9!11;10) subs(10!12;9) subs(13!14)
4 subs(9!11;10) subs(10!12;9)

Table 1: Portion of the YR action table derived from the handle-finding automaton of Figure 2, where concurrent subgoals
become unblocked.

the fact that YR processes one observation at a time, “times-
tamping” each stack entry with the observation number cur-
rent when it was pushed, and taking that entry to apply at all
times forward up to the next timestamp. In this way re-using
an unchanged subset of the upper graph implicitly pushes
the same state onto its pending stack — so essentially, the
pending stack is a sparse stack which only records changes.

A pending stack of single states as we have described it
so far is su�cient for the non-branching stack of a grammar
fragment which does not have shu✏ing. But a single state
will not capture the possible actions across the branched
states of recognizing shu✏ed strings. When a substack is ex-
hausted and the probability information is incorporated into
the controller stack, we will actually need a pending stack
of multisets of states. Incorporating the pending stack from
an exhausted shu✏e substack entails the pairwise multiset
union of corresponding pending stack entries.

Querying across explanations. In the YR state, the up-
per graph encodes all explanations for observed actions. To
answer the typical probabilistic query of whether the obser-
vations suggest that a particular goal is intended, we must
iterate across YR’s compression of multiple goals and plans
into the same upper graph nodes. We traverse the upper
graph, associating prior probabilities and pending stacks to
particular distinct intentions, and enumerating the di↵erent
combinations of these distinct intentions to cover all obser-
vations. The states in the pending stack associated with each
distinct intention tell us both the actual goals which might
be associated with an intention, and the choices of alterna-
tives from disjunction rules. Each pair of an actual goal plus
choices of alternatives denotes a distinct plan for the inten-
tion; the cross products of the plans for the di↵erent inten-
tions in a covering combination comprises the explanations
(in the sense of Equation 2) for that combination. Note that
it is only at these final steps that we can translate the pend-
ing stack’s table row number multisets into the number of
possible actions available at each step, since it is only then
that we identify the goal associated with the intention, and
thus can rule out actions associated only with other goals. In
traversing the upper graph we can calculate simultaneously
the probability of each intention, plus the total probability
mass, for Equation 1.

4 Performance

We have not completed a complexity analysis of GLR-S,
but we do not expect to find that it will run in worst-case
polynomial time: Berglund et al. (2013) showed that deter-
mining membership in a shu✏e of context-free languages

is NP-complete. Although exponential worst-case times are
typical of HTN plan recognizers, they tend to behave much
more reasonably on all but the most eccentric examples.
For testing we generated libraries with two “generations”
of alternating or- and and-rules. Each has 100 top-level
intendable goals naming an or-rule; each or-rule has two
children, and each and-rule, three. Children are randomly
chosen from a pool of rule names, so there is a possibil-
ity of ambiguity in plan derivations. We vary the ordering
relationship on and-node children, considering six di↵erent
groups of libraries: totally ordered children, unordered chil-
dren, the “head” (resp. “tail”) order where one child must
precede (follow) the others, and randomized orders where
there is a 50% or 25% chance when generating the library
for each pair of children that the order between them will
be enforced. Except for the unordered group, each input
set interleaves the observations for three intendable goals,
and we imposed a five-minute maximum run time. For the
unordered group, we ran only a single goal’s observations;
since every observation can always signify a new intention,
the number of observation partitions grows much faster than
with the other groups.

We compare YR to Yappr, and based on those results
argue that YR provides a dramatic improvement in per-
formance. Although Yappr is not the most recent prob-
abilistic plan recognizer, it is the most recent for which
we can make an “apples-to-apples” comparison with YR,
and its performance still ranks high (Stoutenburg Tardieu
2015). ELEXIR o↵ers considerable performance improve-
ments, but it is based on combinatory categorical grammars
(CCGs) rather than HTN plans. Automatically and sensi-
bly translating between HTN libraries and CCG lexicons re-
mains an open problem, so it is not clear how to include
ELEXIR in the sort of comparison based on randomized li-
braries which we use here. A further functional di↵erence
is that the suggested best-performance use of ELEXIR is to
structure lexicons such that association of a goal with ac-
tions is postponed until late in the sequence of actions for
that goal, while YR is designed to provide probabilities for
all possible goals upon the first observation. With regard to
SLIM, our focus with YR is on inferring the goal behind ob-
servations — as with Yappr we do not retain detailed plan
information, and instead assume that the full plan details
can be reconstructed from the goals and observations. In
fact, much of the improvement in Yappr over its predeces-
sor PHATT arose from discarding these details. The goal of
SLIM, on the other hand, is to improve performance while
retaining all plan details. As such, a comparison between
SLIM and YR would be sharply weighted towards YR, as



Run times Mean
Mean Std. dev. % YR Timeouts Yappr/

Group YR Yappr YR Yappr faster YR Yappr YR ratio
Total 14ms 305ms 0.08ms 3.7ms 99.0 0 0 15.5
Head 35ms 881ms 0.64ms 36ms 95.2 0 0 11.0
Tail 2.0s 113s 3.5ms 6.0s 94.8 0 149 45.4
50% 5.0s 118s 200ms 9.0s 97.8 0 172 70.5
25% 88s 204s 5.0s - 52.4 206 427 68.5

Unord 2.0s 231s 327ms 5.0s 100.0 0 203 103.9

Table 2: Summary of performance data. Means, std. devs.
and ratios include only runs which terminated; where time-
outs are reported the actual values would be larger.

a rough examination of SLIM’s reported improvement over
PHATT compared to Yappr’s reported improvement over
PHATT suggests. It is likely for these same reasons that
neither ELEXIR nor SLIM compared themselves to Yappr
in the presentation of their performances.

Table 2 shows a summary of the run times by YR and
Yappr of all six groups. YR performed more quickly than
Yappr in all but a handful of cases, between 94.8% and
100% of the runs in the groups. The mean run time entries
in the table exclude runs which timed out, so performance
is actually worse than the table would suggest for systems
and groups with a substantial number of timeouts. The fig-
ure also shows that YR’s run times are much less variable
than Yappr’s (and again, the presence of timeouts indicates
a greater actual variance than reported). The rightmost col-
umn shows the mean ratio of Yappr and YR’s run times on
the same input; YR consistently runs between one and two
orders of magnitude faster than Yappr. Figure 3 plots the run
times of YR and Yappr on the individual runs.

Much of YR’s performance advantage is due to its com-
pact representation of expressions, and to a lesser extent its
sharing of graph structures. The upper graph allows di↵er-
ences among explanations to be expressed locally within that
graph. Crucially, the bottom-up approach naturally allows
us to avoid creating separate representations for explana-
tions which di↵er only by the particular goal attributed to an
explanation, or by alternate plans for (sub)goals: every ex-
planation with a particular partition of observations among
intentions shares its representation in the upper graph. In
the 25%-ordered and unordered cases, we see YR’s behavior
degrade as the number of partitions spikes, but still outper-
forming Yappr.

One area of YR’s performance which does not improve
over Yappr is the compilation of plan libraries. The final size
of the compiled artifacts (comparing the number of rows in
YR’s table to the number of plan frontier fragments) is not
consistently greater in either YR or Yappr. But our adoption
of LR(0) table construction does require considerably longer
than Yappr’s compilation — up to several minutes instead
of rarely over a second. Of course we have not attempted
to adapt the many improvements to LR table construction to
YR, and we believe it is likely that table construction times
can be significantly improved.

5 Conclusions and future work

We have presented a new algorithm for probabilistic HTN
plan recognition based on generalized LR shu✏e parsing,
and argued for the alignment of HTN plan libraries with
context-free shu✏e grammars rather than context-free gram-
mars in the correspondence of plan recognition to pars-
ing. Applying bottom-up parsing techniques allows dra-
matic performance improvements over previous algorithms
derived from top-down parsing techniques.

In the previous section we noted a di↵erence in scope be-
tween YR and SLIM: YR focuses on deducing the top-level
goals behind observed actions, while SLIM retains full plan
details. Along with the basic GLR algorithm Tomita gave
an approach for e�ciently representing a parse forest, a col-
lection of parse trees, of all possible derivations. An inter-
esting extension of YR (and GLR-S) would adopt Tomita’s
parse forest to accommodate shu✏e expressions, which in
YR would correspond to full plan recognition.
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