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Abstract

Previous work in network analysis has focused on model-
ing node roles in the graph. In this work, we introduce edge
role discovery and develop a general framework for modeling
edge roles in large networks. In addition, a general class of
higher-order role discovery methods are proposed that lever-
age features based on induced subgraphs (graphlets, motifs)
for learning better and more useful roles. All methods are fast
with a runtime that is linear in the number of edges and able
to scale to large real-world networks via an effective paral-
lel implementation. The experimental results demonstrate the
utility of edge roles for network analysis tasks on a variety of
graphs from various problem domains.

1 Introduction
In the traditional graph-based sense, roles represent node-
level connectivity patterns such as star-center, star-edge
nodes, near-cliques or nodes that act as bridges to differ-
ent regions of the graph. Intuitively, two nodes belong to the
same role if they are “similar” in the sense of graph struc-
ture. Our proposed research will broaden the framework for
defining, discovering and learning network roles, by drasti-
cally increasing the degree of usefulness of the information
embedded within rich graphs.

Recently, role discovery has become increasingly impor-
tant for a variety of application and problem domains (Bor-
gatti, Everett, and Johnson 2013; HollandKathryn Black-
mond and Leinhardt 1983; Arabie, Boorman, and Levitt
1978; Anderson, Wasserman, and Faust 1992; Rossi and
Ahmed 2015b; Lorrain and White 1971; White and Reitz
1983) including dynamic network analysis (Fu, Song, and
Xing 2009), classification (Henderson et al. 2012), anomaly
detection (Rossi et al. 2013), and sensemaking/exploratory
analysis (Airoldi et al. 2008). Despite the importance of
role discovery, existing work has only focused on discov-
ering node roles (Anderson, Wasserman, and Faust 1992;
Batagelj et al. 2004; Doreian, Batagelj, and Ferligoj 2005;
Nowicki and Snijders 2001). We posit that discovering the
roles of edges may be fundamentally more important and
able to capture, represent, and summarize the key behav-
ioral roles in the network better than existing methods that
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have been limited to learning only the roles of nodes in the
graph. For instance, a person with malicious intent may ap-
pear normal by maintaining the vast majority of relation-
ships and communications with individuals that play nor-
mal roles in society. In this situation, techniques that re-
veal the role semantics of nodes would have difficulty de-
tecting such malicious behavior since most edges are nor-
mal. However, modeling the roles (functional semantics, in-
tent) of individual edges (relationships, communications) in
the rich graph would improve our ability to identify, de-
tect, and predict this type of malicious activity since we
are modeling it directly. Nevertheless, existing work also
has many other limitations, which significantly reduces the
practical utility of such methods in real-world networks. For
instance, most existing work on node roles are based on
simple degree and egonet features (Henderson et al. 2012;
Rossi et al. 2013). Instead, this work leverages small induced
subgraphs called graphlets (motifs) (Ahmed et al. 2016) to
learn more meaningful and useful roles in large networks.
The main contributions are as follows:
• Edge role discovery: This work introduces the prob-

lem of edge role discovery and proposes a computational
framework for learning and modeling edge roles in both
static and dynamic networks.

• Higher-order latent space model: Introduced a higher-
order latent role model that leverages higher-order net-
work features for learning and modeling node and edge
roles. We also introduced graphlet-based roles and pro-
posed feature and role learning techniques.

• Efficient and scalable: All proposed algorithms are par-
allelized. Moreover, the feature and role learning and in-
ference algorithms are linear in the number of edges.

2 Edge Role Discovery Framework
This section introduces our higher-order edge role model
and a flexible framework for computing edge roles based
on higher-order network features.

2.1 Extracting Higher-order Graphlet Features
Given the graph G = (V,E), we first decomposes G into its
smaller subgraph components called graphlets (motifs). For
this, we use parallel edge-centric graphlet decomposition

PRELIMINARY VERSION: DO NOT CITE



Algorithm 1 A flexible parallel edge feature representation learning
framework for large networks. Given a graph G = (V,E), the frame-
work outputs a matrix X 2 Rm⇥f of edge features.
Input:

a directed and possibly weighted/labeled/attributed graph G = (V,E),
a set of relational edge kernels/operators �, a feature similarity function
Kh·, ·i, an upper bound on the number of feature layers to learn T, a fea-
ture similarity threshold �, and bin size ↵, 0  ↵  1.

1: Set ⌧  1

2: parallel for each e
i

2 E and subgraph H
k

2 H do
3: Set X

ik

to the number of instances of H
k

that contain e
i

2 E

4: Construct in/out/total/weighted edge egonet and edge degree fea-
tures (feature layer F1 which includes the graphlet features as
well). Append these to X and set F  F1.

5: repeat . feature layers F
⌧

for ⌧ = 1, 2, ...,T

6: if ⌧ > 1 then
7: Derive candidate features for feature layer F

⌧

using the set
of relational operators � over each of the novel features
f
i

2 F
⌧�1 learned in previous layers. Append the candidate

features to X and the feature definitions to F
⌧

.

8: For each feature f
i

2 F
⌧

, sort the feature values in ascending
order and then map the feature values using logarithmic binning
(with a bin size of ↵). Given feature f

i

2 F
⌧

, we set the ↵m
edges with smallest feature values to 0, then ↵ edges remaining
are set to 1, and so on.

9: Initialize the feature graph G
F

= (V
F

, E
F

) for feature layer F
⌧

where V
F

is the set of features from F [ F
⌧

and E
F

= ?
10: parallel for each edge feature f

i

2 F
⌧

do
11: for each edge feature f

j

2 F do
12: if K(x

i

,x
j

) � � then
13: Add edge (f

i

, f
j

) to E
F

14: Partition G
F

using connected components C = {C1, C2, . . .}
15: parallel for each C

k

2 C do . Prune features
16: Find the earliest feature f

i

s.t. 8f
j

2 C
k

: i < j.
17: Remove C

k

from F
⌧

and set F
⌧

 F
⌧

[ {f
i

}
18: Discard features not in F

⌧

from X and set F  F [ F
⌧

19: Set ⌧  ⌧ + 1 and initialize F
⌧

to ? for next feature layer
20: until no new features emerge or max layers reached
21: return X and the set of feature definitions F

methods such as (Ahmed et al. 2015) to compute a variety of
graphlet edge features of size k = {3, 4, . . .} (Alg. 1 Line 2).
Moreover, our approach can leverage directed, undirected,
and weighted/typed graphlet counts (among other useful and
discriminative graphlet edge statistics) using either exact or
estimation methods. For instance, we could have used a re-
cent method for estimating local subgraph (graphlet, motif)
counts (Ahmed, Willke, and Rossi 2016). These graphlet
features are then used to learn deeper higher-order edge fea-
tures (see below for further details).

2.2 Edge Feature Learning
This section presents our deep edge feature representation
learning framework (Alg. 1). Recall that our approach lever-
ages the previous higher-order graphlet counts as a basis
for learning deeper and more discriminative higher-order
edge features (Line 2-3). Next, primitive edge features are
computed in Line 4, including in/out/total/weighted edge

egonet and edge degree features. After computing the initial
feature layer F1 (Line 2-4), redundant features are pruned
(Line 5-20). The framework proceeds to learn a set of fea-
ture layers where each successive layer represents increas-
ingly deeper higher-order edge features (Line 5-20), i.e.,
F1 < F2 < · · · < F

⌧

such that if i < j then F
j

is said
to be a deeper layer than F

i

.
The feature layers F2, · · · ,F⌧

are learned as follows
(Line 5-20): For each layer F

⌧

, we first construct and
search candidate features using the set of relational edge fea-
ture operators � (See Line 7), which include mean, sum,
product, min, max, variance, L1, L2, and even parame-
terized relational kernels based on RBF, polynomial func-
tions, among others. Now, we compute the similarity be-
tween all pairs of features and prune edges between fea-
tures that are not significantly correlated (Line 9-13): E

F

=

{(f
i

, f
j

) | 8(f
i

, f
j

) 2 |F| ⇥ |F| s.t. K(f
i

, f
j

) > �}. This
process results in a feature similarity graph where large edge
weights indicate strong similarity/correlation between two
features. Next, the feature similarity graph G

F

from Line 9-
13 is used to prune all redundant edge features from F

⌧

.
Features are pruned by first partitioning the feature graph
(Line 14) using connected components, though our approach
is flexible and allows other possibilities (e.g., largest clique).
Intuitively, each connected component is a set of redun-
dant edge features since edges in G

F

represent strong de-
pendencies between features. For each connected compo-
nent C

k

2 C (Line 15-17), we identify the earliest feature
in C

k

= {..., f
i

, ..., f
j

, ...} (Line 16) and remove all oth-
ers from F

⌧

(Line 17). After pruning the feature layer F
⌧

,
Line 18 ensures the pruned features are removed from X
and updates the set of edge features learned thus far by set-
ting F  F [ F

⌧

. Line 19 increments ⌧ and set F
⌧

 ?.
Finally, Line 20 checks for convergence, and if the stopping
criterion is not satisfied, then the approach tries to learn an
additional feature layer (Line 5-20).

2.3 Role Assignment
Let X =

⇥

x
ij

⇤ 2 Rm⇥f be a matrix with m rows rep-
resenting edges and f columns representing arbitrary fea-
tures1. More formally, given X 2 Rm⇥f , the edge role
discovery optimization problem is to find U 2 Rm⇥r and
V 2 Rf⇥r where r ⌧ min(m, f) such that the product
of two lower rank matrices U and VT minimizes the diver-
gence between X and X0

= UVT . Intuitively, U 2 Rm⇥r

represents the latent role mixed-memberships of the edges
whereas V 2 Rf⇥r represents the contributions of the fea-
tures with respect to each of the roles. Each row uT

i

2 Rr

of U can be interpreted as a low dimensional rank-r embed-
ding of the ith edge in X. Alternatively, each row vT

j

2 Rr

of V represents a r-dimensional role embedding of the jth

feature in X using the same low rank-r dimensional space.
Also, u

k

2 Rm is the kth column representing a “latent fea-
ture” of U and similarly v

k

2 Rf is the kth column of V.

1For instance, the columns of X represent arbitrary features
such as graph topology features, non-relational features/attributes,
and relational neighbor features, among other possibilities.



For the higher-order latent network model, we solve:

argmin

(U,V)2C

n

D
�

(XkUVT

) +R(U, V )

o

(1)

where D
�

(XkUVT

) is an arbitrary Bregman diver-
gence (Bregman 1967) between X and UVT . Furthermore,
the optimization problem in (1) imposes hard constraints C
on U and V such as non-negativity constraints U,V � 0

and R(U, V ) is a regularization penalty. In this work, we
mainly focus on solving D

�

(XkUVT

) under non-negativity
constraints:

argmin

U�0,V�0

n

D
�

(XkUVT

) +R(U, V )

o

(2)

Given the edge feature matrix X 2 Rm⇥f , the edge role
discovery problem is to find U 2 Rm⇥r and V 2 Rf⇥r

such that

X ⇡ X0
= UVT (3)

To measure the quality of our edge mixed membership
model, we use Bregman divergences:
X

ij

D
�

(x
ij

kx0
ij

) =

X

ij

�

�(x
ij

)� �(x0
ij

)� `(x
ij

, x0
ij

)

�

where � is a univariate smooth convex function and

`(x
ij

, x0
ij

) = r�(x0
ij

)(x
ij

� x0
ij

),

where rp�(x) is the p-order derivative operator of � at x.
Furthermore, let X � UVT

= X(k) � u
k

vT

k

denote the
residual term in the approximation (3) where X(k) is the k-
residual matrix defined as:

X(k)
= X�

X

h 6=k

u
h

vT

h

(4)

= X�UVT

+ u
k

vT

k

, for k = 1, . . . , r (5)

We use a fast scalar block coordinate descent approach

that easily generalizes for heterogeneous networks (Rossi
and Zhou 2016). The approach considers a single element in
U and V as a block in the block coordinate descent frame-
work. Replacing �(y) with the corresponding expression
from Table 1 gives rise to a fast algorithm for each Breg-
man divergence. Table 1 gives the updates for Frobenius
norm (Fro.), KL-divergence (KL), and Itakura-Saito diver-
gence (IS). Note that Beta divergence and many others are
also easily adapted for our higher-order network modeling
framework.

2.4 Model Selection
Since it is unrealistic to expect a domain expert to manu-
ally select the appropriate model, this section introduces an
approach for learning the appropriate model given an arbi-
trary graph. The approach leverages the Minimum Descrip-
tion Length (MDL) (Grünwald 2007; Rissanen 1978) prin-
ciple for automatically selecting the “best” higher-order net-
work model. The MDL principle is a practical formalization

Table 1: Summary of update rules
�(y) r2�(y) D

�

(xkx0
) Update

Fro. y2/2 1 (x� x0
)

2/2 v
jk

=

Pm
i=1 x

(k)
ij uikPm

i=1 uikuik

KL y log y 1/y x log

x

x

0 � x+ x0 v
jk

=

Pm
i=1 x

(k)
ij uik/x

0
ijPm

i=1 uikuik/x
0
ij

IS � log y 1/y2 x

x

0 � log

x

x

0 v
jk

=

Pm
i=1 x

(k)
ij uik/x

0
ij

2

Pm
i=1 uikuik/x

0
ij

2

of Kolmogorov complexity (Li and Vitányi 2009). More for-
mally, the approach finds the model M

?

= (V
r

,U
r

) that
leads to the best compression by solving:

M
?

= argmin

M2M
L(M) + L(X |M) (6)

where M is the model space, M
?

is the model given by the
solving the above minimization problem, and L(M) as the
number of bits required to encode M using code ⌦, which
we refer to as the description length of M with respect to ⌦.
Recall that MDL requires a lossless encoding. Therefore, to
reconstruct X exactly from M = (U

r

,V
r

) we must explic-
itly encode the error E such that

X = U
r

VT

r

+E

Hence, the total compressed size of M = (U
r

,V
r

) with
M 2M is simply L(X,M) = L(M)+L(E). Given an ar-
bitrary model M = (U

r

,V
r

) 2M, the description length
is decomposed into:
• Bits required to describe the model
• Cost of describing the approximation errors X � X

r

=

U
r

VT

r

where X
r

is the rank-r approximation of X,

U
r

=

⇥

u1 u2 · · · u
r

⇤ 2 Rm⇥r, and (7)

V
r

=

⇥

v1 v2 · · · v
r

⇤ 2 Rf⇥r (8)

The model M
?

is the model M 2M that minimizes the to-
tal description length: the model description cost X and the
cost of correcting the errors of our model. Let |U| and |V|
denote the number of nonzeros in U and V, respectively.
Thus, the model description cost of M is: r(|U| + |V|)
where  is the bits per value. Similarly, if U and V are
dense, then the model description cost is simply r(m+ f)
where m and f are the number of edges and features, re-
spectively. Assuming errors are non-uniformly distributed,
one possibility is to use KL divergence (see Table 1) for the
error description cost2. The cost of correcting a single ele-
ment in the approximation is D

�

(xkx0
) = x log x

x

0 � x+ x0

(assuming KL-divergence), and thus, the total reconstruction
cost is:

D
�

(XkX0
) =

X

ij

X
ij

log

X
ij

X 0
ij

�X
ij

+X 0
ij

(9)

where X0
= UVT 2 Rm⇥f . Other possibilities are

given in Table 1. The above assumes a particular repre-
sentation scheme for encoding the models and data. Recall

2The representation cost of correcting approximation errors



that the optimal code assigns log2 pi bits to encode a mes-
sage (Shannon 1948). Lloyd-Max quantization (Max 1960;
Lloyd 1982) with Huffman codes (Huffman and others
1952; Van Leeuwen 1976) are used to compress the model
and data (Oliver, Pierce, and Shannon 1948; Bennett 1948).
Notice that we require only the length of the description us-
ing the above encoding scheme, and thus we do not need to
materialize the codes themselves. This leads to the improved
model description cost: ̄r(|U|+ |V|) where ̄ is the mean
bits required to encode each value3.

3 Dynamic Edge Role Membership Model
This section introduces the dynamic edge role mixed-

membership model (DERM) and proposes a computational
framework for computing edge roles in dynamic networks.

3.1 Dynamic Graph Model & Representation
Given a graph stream G = (V,E) where E =

{e1, . . . , ek, ek+1, . . . , em} is an ordered set of edges in the
graph stream such that ⌧(e1)  ⌧(e2)  · · ·  ⌧(e

m

).
Note that ⌧(e

i

) is the edge time for e
i

2 E (which may
be the edge activation time, arrival time, among other pos-
sibilities). Intuitively, E is an infinite edge streaming net-
work where edges arrive continuously over time. From this
edge stream, we derive a dynamic network G = {G

t

}T
t=1

where G
t

= (V,E
t

) represents a snapshot graph at time
t. Note that time t is actually a discrete time interval [a, b)
where a and b are the start and end time, respectively. There-
fore, E

t

= {e
t

2 E | a  ⌧(e
i

) < b} and E =

E1 [ E2 [ · · · [ E
T

.

3.2 Dynamic Edge Role Learning
We start by learning a time series of features automati-
cally. Let G1:k = (V,E1:k) be the initial dynamic train-
ing graph where E1:k = E1 [ · · · [ E

k

and k represents
the number of snapshot graphs to use for learning the ini-
tial set of (representative) dynamic features. Given {G

t

}T
t=1

and G1:k = (V,E1:k), the proposed approach automati-
cally learns a set of features F = {f1, f2, . . . , fd} where
each f

i

2 F represents a learned feature definition from
G1:k. Given the learned role definitions V 2 Rr⇥d using a
subset of past temporal graphs, we then estimate the edge
role memberships {U

t

}T
t=1 for each {G

t

}T
t=1 (and any fu-

ture graph snapshots G
t+1, . . . , Gt+p

) where U
t

2 Rm⇥r

is an edge by role membership matrix. The dynamic edge
role model is selected using the approach proposed in Sec-
tion 2.4.

4 Experiments
This section investigates the effectiveness and scalabil-
ity of the higher-order latent space modeling framework
(Section 2). All network data is from Network Reposi-
tory4 (Rossi and Ahmed 2015a).

Scalability: We investigate the scalability of the parallel
framework for modeling higher-order latent edge roles. To

3Note log2(m) quantization bins are used
4http://networkrepository.com
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Figure 1: Higher-order role discovery shows strong scaling
as we increase the number of processing units.

evaluate the effectiveness of the parallel modeling frame-
work, we measure the speedup defined as simply S

p

=

T1/Tp

where T1 is the execution time of the sequential al-
gorithm, and T

p

is the execution time of the parallel algo-
rithm with p processing units. Overall, the methods show
strong scaling (See Figure 1). Similar results were observed
for other networks. As an aside, the experiments in Figure 1
used a 4-processor Intel Xeon E5-4627 v2 3.3GHz CPU.

Higher-order Model Selection: MDL is used to automat-
ically learn the appropriate edge role model. In Figure 2,
description length (in bits) is minimized when r = 18. Intu-
itively, too many roles increases the model description cost,
whereas too few roles increases the cost of describing er-
rors. In addition, Figure 3 shows the runtime of our ap-
proach. Furthermore, Figure 5 demonstrates the impact on
the learning time, number of novel features discovered, and
their sparsity, as the tolerance (") and bin size (↵) varies.

Modeling Dynamic Networks: In this section, we inves-
tigate the Enron email communication networks using the
proposed dynamic edge role mixed-membership model. The
Enron email data consists of 151 Enron employees whom
have sent 50.5k emails to other Enron employees. The email
communications are from 05/11/1999 to 06/21/2002. For
learning edge roles (and a set of representative edge fea-
tures), we leverage the first year of emails. Note that other
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Figure 2: In the example shown, the valley identifies the cor-
rect number of latent roles.
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Figure 3: The running time of our approach. The x-axis is
time in seconds and the y-axis is the log description cost.
The curve is the average over 50 experiments and the dotted
lines represent three standard deviations. The result reported
above is from running on a single core.

work such as dMMSB (Fu, Song, and Xing 2009) use email
communications from 2001 only, which corresponds to the
time period that the Enron scandal was revealed (October
2001). We instead study a more difficult problem. In par-
ticular, given only past data, can we actually uncover and
detect the key events leading up to the downfall of Enron? A
dynamic network {G

t

}T
t=1 is constructed from the remain-

ing email communications (approximately 2 years) where
each snapshot graph G

t

represents a month of communi-
cations. Interestingly, we learn a dynamic node role mixed-

membership model with 5 latent roles, which is exactly the
number of latent node roles learned by dMMSB (Fu, Song,
and Xing 2009). However, we learn a dynamic edge role
mixed-membership model with 18 roles. Evolving edge and
node mixed-memberships from the Enron email communi-
cation network are shown in Figure 4. Note that the first role
in Figure 4 represents inactivity (dark blue). The set of edges
and nodes visualized in Figure 4 are selected using the dif-
ference entropy rank in Eq. (10) and correspond to the edges
and nodes with largest difference entropy rank d defined as:

d = max

t2T

H(u
t

)�min

t2T

H(u
t

) (10)

where H(u
t

) = �u
t

· log(u
t

) and u
t

is the r-dimensional
mixed-membership vector for an edge (or node) at time t.
The difference entropy rank reveals important communica-
tions between key players involved in the Enron Scandal,
such as Kenneth Lay and Jeffrey Skilling. In particular, Ken-
neth Lay is the former CEO and Chairman of Enron, and was
found guilty of 10 counts of securities fraud, whereas Jef-
frey Skilling is the former COO and CEO of Enron, and was
convicted of federal felony charges relating to Enron’s col-
lapse. As an aside, the Enron data is a standard graph-based
anomaly detection data set (Akoglu, McGlohon, and Falout-
sos 2010; Chen, Hendrix, and Samatova 2012; Fu, Song, and
Xing 2009). Notice that when node roles are used for identi-
fying dynamic anomalies in the graph, we are only provided
with potentially malicious employees, whereas using edge
roles naturally allow us to not only detect the key malicious
individuals involved, but also the important relationships be-
tween them, which can be used for further analysis, among

(a) Evolving edge role mixed-memberships

(b) Evolving node role mixed-membership

Figure 4: Temporal changes in the edge and node mixed-
membership vectors (from Enron). The horizontal axes of
each subplot is time, whereas the vertical axes represent the
components of each mixed-membership vector. Roles are
represented by different colors.

other possibilities.

Exploratory Analysis: Figure 6 visualizes the node and
edge roles learned for ca-netscience. While our higher-order
latent space model learns a stochastic r-dimensional vector
for each edge (and/or node) representing the individual role
memberships, Figure 6 assigns a single role to each link and
node for simplicity. In particular, given an edge e

i

2 E (or
node) and its mixed-membership row vector u

i

, we assign e
i

the role with maximum likelihood k
?

 arg max

k

u
ik

. The
higher-order edge and node roles from Figure 6 are clearly
meaningful. For instance, the red edge role represents a type
of bridge relationship as shown in Figure 6.

Sparse Graph Feature Learning: Recall that the pro-
posed feature learning approach attempts to learn “sparse
graph features” to improve learning and efficiency, espe-
cially in terms of space-efficiency. This section investigates
the effectiveness of our sparse graph feature learning ap-
proach. Results are presented in Table 2. In all cases, our
approach learns a highly compressed representation of the
graph, requiring only a fraction of the space of current
(node) approaches. Moreover, the density of edge and node



t/b 0.5 0.6 0.7 0.8 0.9
0.01 1.48 0.95 0.57 0.47 0.41
0.05 1.03 0.55 0.48 0.46 0.45
0.1 0.72 0.57 0.54 0.51 0.48
0.2 0.78 0.58 0.55 0.52 0.49
0.5 0.58 0.56 0.54 0.6 0.56

(a) Learning time

t/b 0.5 0.6 0.7 0.8 0.9
0.01 327 149 81 46 26
0.05 168 73 48 31 18
0.1 111 53 42 26 18
0.2 94 49 36 24 18
0.5 39 33 30 21 16

(b) Number of features discovered

t/b 0.5 0.6 0.7 0.8 0.9
0.01 0.151 0.158 0.136 0.097 0.077
0.05 0.23 0.209 0.169 0.111 0.084
0.1 0.235 0.23 0.186 0.133 0.084
0.2 0.24 0.223 0.222 0.143 0.084
0.5 0.319 0.276 0.242 0.158 0.094

(c) Sparsity of features

Figure 5: Impact on the learning time, number of features, and their sparsity, as the tolerance (") and bin size (↵) varies.

feature representations learned by our approach is between
[0.164, 0.318] and [0.162, 0.334] for nodes (See ⇢(X) and
⇢(Z) in Table 2) and up to 6x more space-efficient than other
approaches. While existing feature learning approaches for
graphs are unable to learn higher-order graph features (and
thus impractical for higher-order network analysis and mod-
eling), they also have another fundamental disadvantage:
they return dense features. Learning space-efficient features
is critical especially for large networks. For instance, notice
that on extremely large networks, storing even a small num-
ber of edge (or node) features quickly becomes impractical.
Despite the importance of learning sparse graph features, ex-
isting work has ignored this problem as most approaches
stem from Statistical Relational Learning (SRL) (Getoor
and Taskar 2007) and have been designed for extremely
small graphs. Moreover, nearly all existing methods focus on
node features (Davis et al. 2007; Kok and Domingos 2007;
Landwehr et al. 2006; Landwehr, Kersting, and De Raedt
2005), whereas we focus on both and primarily on learning
novel and important edge feature representations from large
massive networks.

Computational Complexity: Recall that m is the number

Figure 6: Edge and node roles for ca-netscience. Link color
represents the edge role and node color indicates the corre-
sponding node role.

Table 2: Higher-order sparse graph feature learning for node
and edge role discovery. The approach is clearly space-
efficient and requires significantly less memory than exist-
ing approaches. Recall that f is the number of features, L is
the number of layers, and ⇢(X) is the sparsity of the feature
matrix. Edge values are bold.

graph f L ⇢(X) ⇢(Z)

socfb-MIT 2080 (912) 8 (9) 0.318 (0.334)
yahoo-msg 1488 (405) 7 (7) 0.164 (0.181)

enron 843 (109) 5 (4) 0.312 (0.320)
Facebook 1033 (136) 7 (5) 0.187 (0.162)
bio-DD21 379 (723) 6 (6) 0.215 (0.260)

of edges, f is the number of features, and r is the number
of latent roles. The total computational complexity of the
higher-order latent space model is O�

f(mf + mr)
�

. The
computational complexity is decomposed into the follow-
ing main parts: Edge feature learning takes O(f(m+mf)).
Model learning takes O(mfr) in the worst case (which
arises when U and V are completely dense). The quantiza-
tion and Huffman coding terms are very small and therefore
ignored. Role assignment using scalar element-wise coordi-
nate descent has worst case complexity of O(mfr) per iter-
ation which arises when X is completely dense. We assume
the initial graphlet features are computed using fast and ac-
curate estimation methods, see Ahmed et al. (2016).

5 Conclusion

This paper introduced the edge role discovery problem and
presented a computational framework for learning and ex-
tracting edge roles from large networks. In addition, higher-
order role discovery methods were proposed that leverage
network motifs (including all induced subgraphs of size 3,
4, and larger) for learning more discriminative and useful
roles. This work also presented an edge feature learning ap-
proach for edge role discovery. All methods are fast with
a runtime that is linear in the number of edges and able to
scale to large real-world networks via an effective parallel
implementation. Furthermore, the proposed class of higher-
order role models naturally support directed, undirected, and
bipartite graphs that are attributed, typed, and/or signed. Fi-
nally, the higher-order role discovery methods are effective
for a variety of descriptive and predictive modeling tasks.
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