
Redesigning Stochastic Environments for Maximized Utility

Sarah Keren1, Luis Pineda2, Avigdor Gal1, Erez Karpas1 and Shlomo Zilberstein2

1Technion – Israel Institute of Technology
{sarahn@,avigal@ie,karpase@}.technion.ac.il,

2University of Massachusetts Amherst
{lpineda@,shlomo@}.cs.umass.edu

Abstract

We present the Utility Maximizing Design (UMD) model
for optimally redesigning stochastic environments to achieve
maximized performance. This model suits well contempo-
rary applications that involve the design of environments
where robots and humans co-exist an co-operate, e.g., vac-
uum cleaning robot. We discuss two special cases of the
UMD model. The first is the equi-reward UMD (ER-UMD)
in which the agents and the system share a utility function,
such as for the vacuum cleaning robot. The second is the goal
recognition design (GRD) setting, discussed in the literature,
in which system and agent utilities are independent. To find
the set of optimal modifications to apply to a UMD model, we
present a generic method, based on heuristic search. After
specifying the conditions for optimality in the general case,
we present an admissible heuristic for the ER-UMD case.
We also present a novel compilation that embeds the redesign
process into a planning problem, allowing use of any off-the-
shelf solver to find the best way to modify an environment
when a design budget is specified. Our evaluation shows the
feasibility of the approach using standard benchmarks from
the probabilistic planning competition.

Introduction
We are surrounded by environments that are designed and
manipulated with the intention of maximizing some benefit.
Hospitals may be designed to minimize the daily distance
covered by staff, supermarkets are constantly rearranged to
make sure users buy as much as possible, airports may be de-
signed to increase passenger spending, computer networks
are structured to maximize message throughput, etc.

Common to all these environments is that their design is
controllable. Such environments can be designed and of-
ten later redesigned to accommodate a specific objective. In
addition, such environments need to account for different
forms of uncertainty.

We aim at providing a generic model to support the of-
fline design of such environments. Therefore, we present
a model of Utility Maximizing Design in which a problem
of redesigning non-deterministic environments in order to
maximize system utility is specified. Non-determinism is
expressed by stochastic outcomes of actions performed by

Copyright c� 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents. The setting we propose takes as input a stochastic
environment, a set of allowed modifications, a set of con-
straints and a system utility criteria. It then finds an optimal
set of modifications to apply to the environment for maxi-
mizing expected utility under the constraints.

Example 1 Consider Figure 1(left), where a vacuum clean-

ing robot is placed in a living room. The utility of the

robot may be expressed in various ways; it may try to clean

an entire room as quickly as possible or cover as much

space as possible before its battery runs out. In any case,

(re)moving a piece of furniture from or within the room (Fig-

ure 1(center)) may increase the robot’s utility. Accounting

for uncertainty, there may be specific locations in which the

robot tends to slip, ending up in a different location than

intended. Increasing friction, e.g., by introducing a high

friction tile (Figure 1(right)), may reduce the probability of

undesired outcomes in particular locations. Both types of

modifications are applied offline (since such robots typically

perform their task unsupervised) and should be applied eco-

nomically in order to maintain usability of the environment.

The proposed Utility Maximizing Design (UMD) model
is a general model whose instantiations provide common
grounds for comparative analysis and identification of ef-
ficient methods for special cases. A key observation with
the UMD model is that utility may differ between the sys-
tem and the agents acting in it. While Example 1 illustrates
an Equi-Reward UMD(ER-UMD) case where agent and sys-
tem share a utility function, earlier works on goal recogni-
tion design (Keren et al. 2014; Wayllace et al. 2016)(GRD)
assumed optimal agents while the system aims at minimiz-
ing expected goal recognition time. We show that different
assumptions on the relation between agent and system utility
induce different solution techniques.

In this work we assume a fully observable stochastic set-
ting and use Markov decision processes (Bellman 1957) to
model the agent environment. We offer a general solution
to the redesign problem by using heuristic search that yields
optimal design strategies when using admissible heuristics.
We formulate the conditions for admissibility for UMD set-
tings and propose a heuristic based on simplifications of the
environment, which we show to be admissible for the ER-
UMD case but not for GRD. In addition, for ER-UMD, we
exploit the alignment of system and agent utility to show a

PRELIMINARY VERSION: DO NOT CITE

Figure 1: An example of a Utility Maximizing Design problem

way to piggyback on the search for optimal policy to find an
optimal set of modifications.

We evaluate our work using probabilistic benchmarks
from the International Planning Competitions, where a va-
riety of stochastic shortest path MDPs are introduced (Bert-
sekas 1995). We show how redesign substantially improves
utility, expressed via reduced cost achieved with a small
modification budget. Moreover, the techniques we develop
outperform the exhaustive approach.

The contributions of this work are threefold. First, we de-
scribe a new general model, namely Utility Maximizing De-

sign, which involves the offline redesign stochastic environ-
ments for improving utility and show how goal recognition
design is a special case of this setting. In particular, chang-
ing probability distributions offers a wide range of subtle
(more realistic) modifications to be applied to a model, e.g.,
reducing the probability of a slipping rather than eliminat-
ing it altogether. Second, we present a general method for
solving UMD problems using informed heuristic search and
specify the conditions under which an optimal solution can
be found. Finally, for the special case where agent and
system utility function is the same we formulate and com-
pare three approaches for finding an optimal set of modifi-
cations to apply given a budget, namely an informed search
approach with an admissible heuristic, a compilation-based
method that embeds design into the definition of a planning
problem.

Background
Non-deterministic planning problems with full feedback are
typically modeled using a Markov decision process (MDP)
(Bertsekas 1995). An MDP can be described in various
ways, depending on the way agent utility and optimization
criteria are defined (Mausam 2012; Kaelbling et al. 1998).
Typically, an MDP is described by a tuple hS,A, f,R, �i
where S is a finite set of states, A(s) ⇢ A is the set of actions
an agent can apply in state s 2 S, f : S ⇥ A ⇥ S ! [0, 1]

is a transition function specifying the probability f(s, a, s

0
)

of reaching state s

0 after applying action a in s 2 S and
R : S ⇥ A ⇥ S ! R is a function specifying the re-
ward R(s, a, s

0
) obtained when the system goes from state

s to state s

0 as a result of executing action a (we assume a
stationary reward function). The solution of an MDP is a
control policy ⇡ : S ! A describing the appropriate ac-
tion to perform at each state in order to maximize the ac-
cumulated reward. Given a policy ⇡ and a state s 2 S,
the expected reward of following policy ⇡ from state s is

described by V

⇡

(s). The optimal value of s is the solu-
tion of the Bellman equations (Bellman 1957): V

⇤
(s) =

max

a2A

[[

P
s

02S

f(s, a, s

0
)[R(s, a, s

0
) + �V

⇤
(s

0
)].

To guarantee the expected reward is finite, additional re-
strictions are imposed. The infinite horizon discounted re-

ward MDP is an MDP, as described above, with the re-
striction 0 < � < 1. Another restricted formulation is the
stochastic shortest path MDP (SSP-MDP) (Bertsekas 1995)
defined by the tuple hS,A, f, C,G, s

0

i where S, A and f are
as above, C : S⇥A⇥S ! (0,1) specifies the strictly posi-
tive cost C(s, a, s0) of applying action a in state s and ending
up in state s0, with the exception of goal states G ✓ S, which
are all absorbing. Additionally, we have an initial state s

0

.
The objective is to find a policy that minimizes the expected
cost of reaching a goal state from s

0

.

Model
Having reviewed the necessary background, we now present
the Utility Maximizing Design (UMD) model (Definition 4)
that has three components: a stochastic environment in
which agents act (✏), possible behaviors of agents in the en-
vironment and the ways by which they accumulate rewards
(↵), and the utility maximizing system that has control over
the environment via applicable modifications (�). We for-
mulate each of these components separately before integrat-
ing them into the UMD model definition.

Definition 1 An environment ✏ = hS
✏

, A

✏

, f

✏

i is a triple

with a set of states S

✏

, a set of actions A

✏

and a stochas-

tic transition function f

✏

: S

✏

⇥A

✏

⇥ S

✏

! [0, 1].

Whenever ✏ is clear from the context we use S, A and f .
We use E to denote a set of environments of interest. For
example, we may wish to be able to move furniture around
a room but not to break down walls. Given an environment
✏ 2 E , we let ⇧

✏

represent the set of all possible policies in
✏. The feasibility of a policy may be dictated, for example,
by the laws of physics. e.g., a vacuum cleaning robot can-
not move through an obstacle. In addition, ⇧E =

S
✏2E ⇧✏

represents the union of policies in all environments in E .
In a given environment, agents may choose different be-

haviors depending on the utility measure they aim at maxi-
mizing. We characterize an agent using a reward function,
describing the immediate reward collected by the agent at
each possible transition, and a discount factor, dictating the
way by which rewards are accumulated over time.

Definition 2 ↵ = hT , {R
⌧

}
⌧2T , {�⌧}⌧2T i is a triple,

defining a set of agent types T . Given an environment ✏ and

a type ⌧ 2 T :

• R
⌧

: S

✏

⇥A

✏

⇥S

✏

! R is a Markovian and stationary re-

ward function, specifying the reward r

⌧

(s, a, s

0
) an agent

of type ⌧ gains from transitioning from state s to s

0
by the

execution of a (a reward becomes a cost when negative).

• �

⌧

is an agent-type specific discount factor in (0, 1], rep-

resenting the deprecation of agent rewards over time.

Combining an environment ✏, a reward function R
⌧

(✏), and
a discount factor �

⌧

(✏) yields an MDP hS
✏

, A

✏

, f

✏

,R
⌧

, �

⌧

i,
leading to a set of MDPs that share the environment but dif-
fer in the way agent utility is defined. Whenever ✏ and ⌧ are
clear from context we use R, and �.

Given an environment ✏ 2 E , we let ⇧h✏,⌧i ✓ ⇧

✏

rep-
resent the set of policies agents of type ⌧ may follow in ✏.
Accordingly, ⇧h✏,T i =

S
⌧2T ⇧h✏,⌧i represents the union of

policy sets of all agent types, thus representing the type of
behaviors that may occur in a given environment.

We now turn our attention to the system point of view of
an environment and the agents that act within it. The model
supports a system that controls an environment by applying
to it a sequence of modifications (atomic changes such as
additions and deletion to environment elements) in order to
maximize the system’s utility. Accordingly, we let M rep-
resent a set of modifications and define a modification se-
quence ~m = hm

1

, . . . ,m

n

i such that for all 1 i n,m

i

2
M is an ordered set of modifications. We let ~M represent
the set of all sequences of modifications over M. We refer
to sequences rather then sets to support settings where the
order of application effects the impact on the model.

The system component � specifies both the way the sys-
tem accumulates rewards and the ways by which it can re-
design the environment.
Definition 3 A system � = hR

�

,M
�

,⇥

�

,�

�

i is a quadru-

ple, such that given an environment ✏ and an agent compo-

nent ↵:

• R
�

is the system reward R
�

: ⇧h✏,T i ! R, which spec-

ifies the expected reward a system accumulates when an

agent executes a policy ⇡ 2 ⇧h✏,T i.
• M

�

is a finite set of modifications a system can ap-

ply. Modifications are associated with a system cost

C
�

: M
�

! R+

and a cost of a modification sequence is

defined to be C
�

(

~m) =

P
m2~m C

�

(m).

• ⇥

�

: M ⇥ E ! E is a deterministic modification tran-

sition function, specifying the result of applying a modifi-

cation on an environment.

• �

�

:

~M⇥ E ! {0, 1} is an indicator that constrains the

allowed sequence of modifications on an environment.

Finally, the UMD model is defined as follows.

Definition 4 A Utility Maximizing Design (UMD) model is

a quadruple hE ,↵,�, ✏0i where E , ↵, � are as defined above

and ✏

0

is the initial environment.

To specify the UMD redesign problem, we first define the
system utility U

�

(✏) to be the minimal expected system re-
ward over all possible agent policies.

U
�

(✏) = min

⇡2⇧h✏,T i
R

�

(⇡) (1)

Given an environment ✏ and a sequence ~m of modifica-
tions such that �

�

(~m) = 1, i.e., ~m can be applied to ✏, we let
✏

~m

represent the environment that is the result of applying ~m

to ✏. The general problem we aim to tackle is therefore
maximize

~m2 ~M�|��(~m)=1

U
�

(✏

0

~m

) (2)

In particular, we are interested in a solution to Problem 2
which minimizes modification cost C(~m) of applying mod-
ification sequence ~m. For a given UMD model �, we denote
a solution to Problem 2 by ~M⇤

�

= {~m⇤} and the maximal
system utility by Umax

(�).
It is worth noting that system reward is defined as an

arbitrary function of the agent’s policy which is given as
an input parameter without any assumptions on the com-
plexity of computing it. Moreover, while agent utility
and system utility may be aligned, it is not necessarily
the case. In Example 1, both the vacuum cleaning robot
and the system design process share a common objec-
tive of maximizing expected agent reward. Conversely,
in a goal recognition design setting, while agents either
minimize the cost to their goals (Keren et al. 2014; b;
Son et al. 2016) or aim to conceal them (Keren et al. a;
2016), system utility is defined by the maximal expected dis-
tance an agent can advance in the system before its goal is
recognized. Next we describe these two settings as special
cases of the UMD framework.
Equi-reward UMD
The equi-reward utility maximizing design (ER-UMD)
model accounts for settings, like the one in Example 1,
where a single reward maximizing agent type is defined and
shares the same utility function with the system. The system
chooses among the set of allowed modifications to redesign
the environment in order to maximize user utility.

The ER-UMD is a special case of the UMD model defined
in Definition 4 with an environment ✏ = hS

✏

, A

✏

, f

✏

, s

0,✏

i
that includes an initial state s

0,✏

2 S

✏

. The agents descrip-
tion ↵ includes a single agent type T = {⌧} (hereon omitted
from notation) with R and �, the reward function and dis-
count factor associated with agents, respectively.

We assume agents are optimal. Therefore, ✏ and ↵ de-
fine a set of optimal policies ⇧h✏i = ⇧

⇤
h✏i an agent may

follow. The system component � describes the design pro-
cess to maximize agent utility. Thus, given an environment
✏ and agent policy ⇡ 2 ⇧

⇤
h✏i, system reward is defined as

R
�

(⇡) = V

⇡

✏

(s

0,✏

), where V

⇡

✏

(s

0,✏

) is the (optimal) ex-
pected reward from following ⇡ in ✏ starting from s

0,✏

.
Modifications m 2 M can be defined arbitrarily support-

ing all the changes applicable to a deterministic environment
(Herzig et al. 2014). For example, we can allow adding the
a transition between previously disconnected states. Particu-
lar to a stochastic environment is the option of modifying the
transition function by increasing and decreasing the proba-
bility of specific outcomes. In Example 1, this corresponds
to adding friction to slippery areas, thus increasing the prob-
ability of the agent ending up at its intended state.

The constraint set �
�

includes a single constraint: �
B

that
specifies the modification budget B limiting the number of
allowed modifications.

Since all possible agent policies share the same system util-
ity function, the objective is to find a modification sequence
~m

⇤ 2 ~M⇤ which maximizes system utility U
�

(✏

0

~m

⇤) =

V

⇤
✏

0
~m⇤
(s

0,✏

0
~m⇤) under the budget constraint. In particular, we

seek solutions which minimize modification cost.

Goal recognition design as UMD
Goal recognition design (GRD) aims at minimizing non-
distinctive behavior, behavior that does not reveal the goal
of the executing agent (Keren et al. 2014). We show that
GRD is a special case of the UMD model in which a system,
panelized for non-distinctive behavior, is redesigned by dis-
allowing actions from the model.

Following (Wayllace et al. 2016), a stochastic
GRD problem is represented using a stochastic shortest path
MDP(SSP-MDP) with a set of possible goals states and a
design budget that can be used to disallow actions in the
model. A GRD setting is then defined by the tuple R =

hS
R

, s

0,R

, A

R

, f

R

,G
R

, {C
R,g

}
g2GR , BR

i, where S
R

is a set
of states, s

0,R

is the initial state, A
R

are the set of actions,
f

R

is a stochastic transition function f

R

: S

R

⇥A

R

⇥S

R

!
[0, 1], G

R

✓ S

R

is the set of possible goal states of an agent
in R, C

R,g

: S

R

⇥ A

R

⇥ S

R

! R0+ is a cost function
specifying the cost of executing actions a in state s and ar-
riving at state s

0 for agents aiming at goal g 2 G
R

and B

R

is the maximal number of actions that can be disallowed in
the model. A GRD setting is modified by disallowing a set
of actions ˆ

A ✓ A

R

under the constraints the expected cost
to all goals is unchanged and | ˆA| B

R

. We use S, s
0

, A,
f , G, {C}

g2G and B when clear from context.
A goal recognition design setting is a special case of a

UMD model, with an environment ✏ = hS
✏

, A

✏

, f

✏

, s

0,✏

i for
which the initial state s

0,✏

is specified. The description of
the agents component ↵ specifies the set of types as possible
goals T = G and for every goal g 2 G, the reward R

g

(✏)

is represented by the action cost function of the goal C
g

(✏)

and �

g

(✏) = 1. Assuming optimality, the set ⇧h✏,gi for each
agent type g is the set ⇧⇤

h✏,gi of optimal policies agents aim-
ing at g may follow. Non-distinctive policies ⇧nd

h✏,gi ✓ ⇧

⇤
h✏,gi

are the prefixes of these policies that are shared by more than
one goal (see (Wayllace et al. 2016) for a full description).

The system component � = hR
�

,M
�

,⇥

�

,�

�

i de-
scribes the design process that disallows actions in order to
minimize non-distinctive behavior, corresponding to execut-
ing non-distinctive policies. Each modification m

a

2 M
�

corresponds to the removal of a single action a 2 A

R

from
the model. The modification function is then ⇥

�

(m

a

, ✏) = ✏

0

where ✏

0
= hS

✏

, A

✏

\ a, f
✏

, s

0,✏

i.
The constraint set �

�

includes two constraints: �
B

specify-
ing the modification budget B and �⇤ disallowing a change
to the expected cost to any of the goals from the initial state.

System reward R
�

(⇡) for policy ⇡ is defined as the ex-
pected agent cost of following the maximal non-distinctive
prefix of ⇡. Accordingly, system utility U

�

(✏) is the worst

case distinctiveness(wcd), the maximal expected cost over
all non distinctive policies

S
g2G ⇧

nd

h✏,gi.
The objective is to minimize wcd value by using a modifi-

cation sequence ~m = hm
a1 , . . . ,m

ani of actions to be disal-

lowed in ✏

0 that complies with the connstraints. In particular,
we may be interested in the minimal set that achieves this.

Finding ~
m

⇤ using informed search
The baseline method for finding an optimal modification
sequence to apply to a UMD model is an exhaustive ex-
ploration of all allowed modification sequences and se-
lecting one that maximizes system utility. This approach
was used for finding the optimal set of disallowed actions
in a goal recognition design setting (Keren et al. 2014;
Wayllace et al. 2016). There, pruning was applied as a way
to reduce the size of the state space. The pruning of the
GRD search tree is performed by exploring only modifica-
tions that disallow actions that are part of the set of wcd poli-
cies, policies that share the maximal non-distinctive prefix.

In this work, we propose a different approach. We note
that the approach described above is not applicable to the
general UMD model that supports arbitrary modification op-
tions that may affect system utility when applied to any part
of the model. For example, removing furniture from any
part of the room may add improved policies for the vacuum
cleaning robot that were not originally possible.

m∅

Original environment

m2m1

m1,2

Execution - agent policy

Design - system policy

m3

m1,3 m2,3 m3,1 m3,2m2,1

Figure 2: State space of a UMD problem

With the objective of finding efficient methods for the
general UMD model, we observe that a UMD problem
� = hE ,↵,�, ✏0i can be viewed as a tree comprising of two
components (see Figure 2). The design component, at the
top of the figure, describes the deterministic offline design
process with nodes representing the different possibilities of
modifying the environment. The execution component, at
the bottom of the figure, represents the stochastic modified
environments in which agents act.

Each design node represents a different UMD model,
characterized by the sequence ~m of modifications that has
been applied to the environment and a constraints set �

�

,
specifying the allowed modifications in the subtree rooted
at a node. With the original UMD problem � at the root,
each successor design node represents a sub-problem �

~m

of
the ancestor UMD problem, accounting for all modification
sequences that have ~m as their prefix. The set of constraints
of the successors is updated with relation to the parent node.
For example, when a design budget is specified, it is reduced
when moving down the tree from a node to its successor.

When a design node is associated with an allowed modi-
fication (i.e., �

�

(~m) = 1) it is connected to a leaf node rep-
resenting the environment ✏

~m

that results from applying the
modification. To illustrate, invalid modification sequences
are crossed out in Figure 2.

Algorithm 1 Best First Design (BFD)
BFD(�, h)
1: create OPEN list for unexpanded nodes
2: ncur = hdesign, ~m;i (initial model)

3: while ncur do
4: if IsExecution(ncur) then
5: return ncur.~m (best modification found - exit)

6: end if
7: for each nsuc 2 GetSuccessors(ncur, �) do
8: put hhdesign, nsuc.~mi, h(nsuc)i in OPEN
9: end for

10: if ��(ncur.~m) = 1 then
11: put hhexecution, ~mnewi, Usys(✏0~mnew

)i in OPEN
12: end if
13: ncur = ExtractMax(OPEN)
14: end while
15: return error

We exploit this structure and suggest an informed search
in the space of allowed modifications, using heuristic esti-
mations to guide the search more effectively by focusing at-
tention on more promising redesign options. The Best First

Design (BFD) algorithm (detailed in Algorithm 1) accepts as
input a UMD model � = hE ,↵,�, ✏0i, and a heuristic func-
tion h. The algorithm starts by creating an OPEN priority
queue (line 1) holding the front of unexpanded nodes. In line
2, n

cur

is assigned the original model, which is represented
by a flag design and the empty modification sequence ~m;.

The iterative exploration of the currently most promising
node in the OPEN queue is given in lines 3-14. If the cur-
rent best node represents an execution model(indicated by
the execution flag) the search ends successfully in line 5, re-
turning the modification sequence associated with the node.
Otherwise, the successor design nodes of the current node
are generated by GetSuccessors in line 7. Each successor
sub-problem n

suc

is placed in the OPEN list with its asso-
ciated heuristic value h(n

suc

) (line 8), to be discussed in
detail next. In addition, if the modification sequence n

cur

.~m

associated with the current node is valid according to �

�

, an
execution node is generated and assigned a value that corre-
sponds to the actual system value Usys(✏0

~mnew
) in the result-

ing environment (lines 10-12). The next node to explore is
extracted from OPEN in line 13.

Both termination and completeness of the algorithm
depend on the implementation of GetSuccessors, that
controls the graph search strategy by generating the
sub-problem design nodes related to the current node.
For example, when a modification budget is specified,
GetSuccessors generates a sub-problem for every modi-
fication m 2 M

�

that is appended to the sequence ~m of the
parent node. discarding sequences that violate the budget
and updating it for the valid successors.

For optimality, we require the heuristic function h to be
admissible. An admissible estimation of a design node

n, formally given in Definition 5, is one that never un-
derestimates Umax

(�), the maximal system’s utility in the
UMD problem � represented by n.1

Definition 5 Given a UMD model � = hE
�

,↵

�

,�

�

, ✏

0

�

i, a

heuristic function h(�) is admissible if

h(�) � Umax

(�)

Running BFD with an admissible heuristic is guaranteed
to yield an optimal modification sequence to a UMD model.
Theorem 1 Given a UMD model � and an admissible h,

BFD(�, h) returns

~m⇤ 2 ~M⇤
�

.

The proof of Theorem 1 bares similarity to the proof of A⇤

(Nllsson 1980) and is omitted here for the sake of brevity.

Admissible Heuristics for UMD
Using heuristic search promotes the need to develop infor-
mative heuristics that are relativity easy to compute. In-
formative admissible heuristics can be obtained by solving
suitable simplifications of the input problem, which are typ-
ically achieved by relaxing various aspects of the problem
at hand (Pearl 1984). This feature allows using these esti-
mations as admissible heuristics. In the UMD case, a sim-
plification of a model is one that is guaranteed to produce a
model whose maximal system utility Umax

(�) is at least as
high as that of the real value. We let � represent the set of
possible UMD models and define a simplification as follows.
Definition 6 A function f : � ! � is a simplification if

8�, �0 2 � if �

0
= f(�) then Umax

(�) Umax

(�

0
).

A key issue to notice when developing heuristics for UMD is
the overlap between the design process, used to maximize
system utility in the resulting model and the simplification
applied by the heuristic methods in order to ease the solution
of a model. This overlap may limit the informative value of
a heuristic estimation. For example, if a modification adds
friction to specific area of the model and the applied sim-
plification ignores the undesired outcome of move actions
(which is slipping), the solution of the simplified environ-
ment may not reveal the value of applying the modification.

Definition 3 allows an arbitrary definition of system re-
ward, making it necessary to consider the specific character-
istic of each UMD setting when formulating simplifications.
In particular, the distinction the UMD framework creates be-
tween agent and system utility means that the standard ways
for simplifying environments do not necessarily hold for the
general UMD case. As an example we show an approach
that produces admissible estimates for ER-UMD setting, but
is not valid for the GRD case.

Finding ~
m

⇤ for ER-UMD
In a ER-UMD setting agents and system share the same util-
ity function. We exploit this feature both in formulating an
admissible heuristic for the value of a modification sequence
and in presenting a compilation that embeds the design pro-
cess into the description of a planning problem that can be
solved using any off-the-shelf solver.

1When system utility is expressed as cost, we require it to never
overestimate the real cost.

The simplified-environment heuristic The solution of a
UMD problem involves the solution of a new sub-model at
every node. We suggest to perform a one time simplification
of the original model as part of a preprocessing stage and
use the simplified model to produce heuristic estimates for
the design nodes of the search.

Accordingly, the simplified-environment heuristic, de-
noted h

sim, estimates the value of applying a modification
~m to a UMD setting using the value of applying ~m to a
UMD setting with a simplified environment. Let U

↵

(✏) de-
note agent utility in ✏ when starting at s

0,✏

.
Definition 7 Given a UMD model � = hE ,↵,�, ✏0i, a func-

tion f : E ! E is an environment simplification if 8✏, ✏0 2 E
if ✏

0
= f(✏) then U

↵

(✏) U
↵

(f(✏)).

Given a UMD model � = hE ,↵,�, ✏0i and a simpli-
fication function f , we let f(✏

0

) represent the simpli-
fied environment that results from applying f to ✏

0 and
�

sim

= hE ,↵,�, f(✏0)i as the resulting UMD model. The
simplified-environment heuristic estimates the value of ap-
plying a modification sequence ~m to � by the optimal solu-
tion of applying ~m to �

sim.

h

sim

(�)

def

= Umax

(�

sim

~m

) (3)
where �sim

~m

represents the UMD model that results from ap-
plying modification ~m to ✏

0

�

sim .
To illustrate, consider Example 1. A simplified environ-

ment may be one where agent’s slipping is ignored. The
search applies modifications, such as moving furnitures, on
the simplified model and uses the optimal solution of the
simplified environment as an estimate of the value of apply-
ing the modifications in the original (slippery) setting.

The literature is rich with simplification approaches, in-
cluding adding macro actions that can do more with the
same cost, removing some action preconditions, eliminating
the negative effects of actions (delete relaxation) or elimi-
nating undesired outcomes of actions (Holte et al. 1996).
While differing in the applied approach, common to all is
that agent utility cannot decrease (cost cannot increase).

To be useful, we choose simplifications that are guar-
anteed to be easier to solve, providing valuable informa-
tion used to direct the search more efficiently. In par-
ticular, we suggest applying the commonly used all out-

come determinization(Yoon et al. 2007), which creates a
deterministic action for each probabilistic outcome of ev-
ery action. Using Definition 5 for admissible heuristics for
UMD, Lemma 1 ensures the admissibility of the simplified-
environment heuristic for ER-UMD using this approach.
Lemma 1 Given a ER-UMD model hE ,↵,�, ✏

0

i, applying

the simplified-environment heuristic with f implemented as

an all outcome determinization function is admissible.

The proof of Lemma 1, omitted for brevity, uses the obser-
vation that f only adds solutions with higher reward (lower
cost) to a given problem (either before or after redesign).
A similar reasoning can be applied to the other approaches
discussed above, and the delete relaxation in particular.

The simplified-environment heuristic is not guaranteed to
produce admissible estimates for the general UMD case, as
shown below.

Lemma 2 h

sim

is non-admissible for GRD.

The proof, omitted for brevity, uses a simplified environ-
ment to which the all outcome determinization was applied
to show that the wcd in the simplified environment may over-
estimate the true wcd value.

The simplified-environment heuristic relies on the opti-
mal solution of a simplified UMD model which can be per-
formed using the DesignComp compilation presented next.

ER-UMD compialtion to planning For finding an opti-
mal sequence of modifications to apply to an ER-UMD set-
ting with a specified design budget, we suggest a compila-
tion that embeds design into a planning problem. This is
done by adding operators that modify the environment and
making sure these modification actions are applicable only
during an initialization stage that precedes the execution of
agent policy. When initialization is complete, the agent acts
in the optimized environment. This approach can be used by
the simplified-environment heuristic, as well as a stand-alone
approach for solving ER-UMD settings.

The ability to embed design in the search for an optimal
policy relies on the alignment of agent and system utility
assumed in the ER-UMD setting, making it inapplicable to
the the GRD setting, where agent and system utility are not
aligned. This alignment allows using any off the shelf op-
timal solver to find optimal modification sequence ~m

⇤ to be
applied while seeking the optimal agent policy.

The compilation approach is inspired by the technique
of Göbelbecker et al. (2010) of coming up with good ex-
cuses for why there is no solution to a planning problem,
an approach later extended to deal with various modifica-
tion options in deterministic settings (Herzig et al. 2014;
Menezes et al. 2012; Eiter et al. 2010). The compilation
presented here extends this approach in three ways: by ad-
dressing stochastic environments rather than deterministic
ones, by finding modifications to maximize the utility of the
agent, rather than only moving from unsolvable to solvable
and by embedding the support of a design budget.

The DesignComp compilation is formulated using the
PPDDL notation (Younes and Littman 2004) to describe
an infinite horizon discounted reward MDP, represented
using a factored representation and defined by the tu-
ple hX , S, A, s

0

,R, �i where the specification of a state
s 2 S is a combination of values of several state vari-
ables X (Mausam 2012). The definition excludes the
transition function which is embedded in the descrip-
tion of actions, each represented as a tuple of the form
hprec, hp

1

, add

1

, del

1

i, . . . , hp
m

, add

m

, del

m

ii where prec

represents the preconditions of the action as a conjunction
of literals that need to be true for the action to be applica-
ble. The list hp

1

, add

1

, del

1

i, . . . , hp
m

, add

m

, del

m

i are the
probabilistic effects, where p

i

is the probability of the i-th
effect, add

i

is the conjunction of positive literals that the
effect adds to the state description and del

i

is the conjunc-
tion of negative literals (positive literals that are set to false)
added to the state description.

Corresponding to the structure depicted in Figure 2, the
policy of the compiled planning problem has two stages: de-

sign - in which a budget is used to modify the system and

execution - describing the policy agents follow to maximize
reward. Accordingly, the compiled domain has two types of
actions: A

des

, corresponding to modifications applied by the
design system and A

exe

, executed by the agent. To separate
between the stages we use a fluent execution, initially false
to allow the application of A

des

, and a no cost action a

start

that sets execution to true rending A

exe

applicable.
The compilation process supports two types of modifica-

tions: changing the initial state and changing the action set.
Accordingly, the design actions set A

des

= A

des-s0[Ades-A
specifies two action types. Actions in A

des-s0 change the
initial state by setting the value of a state variable x 2
XM ✓ X to true in the initial state. The set A

des-A spec-
ifies a set of actions AM that can be added to the environ-
ment. This is implemented by initially disabling all actions
AM. Each action a

des�a

2 A

des-A applied during the de-
sign stage enables the execution of a 2 AM by setting its
flag enabled

a

to true. All design actions have uniform cost.
The set A

exe

= A [AM includes the set of actions A

from the original model and the set AM of actions that can
be enabled by the design process. In particular, we include
in AM actions that share the same structure as an action in
A except for a modified probability distribution.

The budget B is implemented using a timer mechanism
as in (Keren et al. a) which advances with the application of
each design action. The timer limits the solution to include
at most B design actions before applying a

start

. Following
is the definition of DesignComp.

Optimally solving the compiled problem P

0 yields an op-
timal policy ⇡

⇤
P

0 with two components, separated by the ex-
ecution of a

start

. The initialization component consists of a
possibly empty sequence of deterministic design actions de-
noted by ~m

P

0 , while the execution component represents the
optimal policy in the modified environment. The set of opti-
mal modification sequences of the original ER-UMD prob-
lem P is represented by ~M⇤

P

.
The next two propositions establish the correctness of the

compilation. Proofs are omitted due to space constraints.
We first argue that the expected reward in the compiled plan-
ning problem is exactly the expected reward accumulated in
the optimal modified environment.

Lemma 3 Given an ER-UMD problem P and an optimal

modification sequence

~m
P

0 2 ~M⇤
P

V

⇤
(s

0
0

) = V

⇤
✏~m⇤

P

(s

0,✏~m⇤
P
)

An immediate corollary is that the compilation outcome is
indeed an optimal sequence of modifications.

Corollary 1 Given an ER-UMD problem P and the com-

piled model P

0
,

~m
P

0 2 ~M⇤
P

To ensure that the compilation not only respects the de-
sign budget B, but also minimizes design cost as much as
possible, we assign a small cost c

d

to design actions A

des

.
Note that if this cost is too high, it might lead the solver
to omit design actions that improve utility by less than c

d

.
However, the loss of utility will be at most c

d

B. Thus, by
bounding the minimum improvement in utility from a mod-
ification, we can still ensure optimality.

Empirical Evaluation
Our evaluation aims at measuring the effect of a budget on
the utility of a ER-UMD problem, as well as the perfor-
mance of both optimal and approximate techniques for solv-
ing a ER-UMD problem Datasets We used six PPDDL do-
mains from the probabilistic tracks of the sixth and eighth
International Planning Competition2 (IPPC06 and IPPC08)
representing stochastic shortest path MDPs with uniform
action cost: Box World (IPPC08/ BOX), Blocks World
(IPPC08/ BLOCK), Exploding Blocks World (IPPC08/ EX-
BLOCK), Triangle Tire (IPPC08/ TIRE) and Elevators
(IPPC06/ ELEVATOR). For each domain, we created 10

simplified instances, considering only ones optimally solv-
able in their original unmodified formulation within a time
bound of five minutes. For each domain we examined at
least two possible modifications, including at least one that
modifies the probability distribution. The specific modifica-
tions applied to each domain are specified in Table 2 where
change init refers to modifications applied to the initial state
and probability change to the probability function.

change init probability change
BOX relocate a truck reduce probability of driving to a wrong destination

BLOCK — reduce probability of dropping a block or tower
EX-BLOCK — as for Blocks World

TIRE add a spare tire at a location reduce probability of having a flat tire
ELEVATOR add elevator shaft reduce probability of falling to the initial state

Table 2: Allowed modifications for each domain

Setup We optimally solved each problem using:
• Exhaustive exploration of all possible modifications (EX).
• Solution of the design DesignComp (DC) compilation.
• Execution of the BFD algorithm with the simplified-

environment heuristic using the delete relaxation to sim-
plify the UMD model and the DesignComp to optimally
solve the simplified models (BFD).

We used a portfolio of 3 admissible heuristics:
• h

0

assigns 0 to all states and serving as a baseline for the
assessing the value of more informative heuristics.

• h

0

+ assigns 1 to all non-goal states and 0 otherwise.
• h

MinMin

solves all outcome determinization using the
zero heuristic (Bonet and Geffner 2005).

Each problem was tested with budget ranging from 1 to 3.
Design actions were assigned a cost of 10�4, while the con-
vergence error bound of LAO* was set to 10

�6. Experi-
ments were run on Intel(R) Xeon(R) CPU X5690 machines,
with a time limit of 30 minutes and memory limit of 2GB.

B=1 B=2 B=3
solved improved solved improved solved improved

BOX 8 0.279 8 0.42 7 0.44
BLOCK 6 0.207 3 0.24 3 0.24

EX-BLOCK 10 0.415 9 0.415 9 0.415
TIRE 9 0.44 8 0.511 6 0.537

ELEVATOR 9 0.22 7 0.24 0 NA

Table 3: Ratio of value improvement for optimal solvers

Results Separated by domain, Table 3 summarizes the ratio
of expected cost improvement brought by the design pro-
cess, as well as the number of solved instances for each
budget value. With the exception of EX-BLOCK, reduction

2http://icaps-conference.org/index.php/main/competitions

Box Blocks Ex. Blocks Triangle Tire Elevators
B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3

Ex-h
0

158.42(8) 264.79(7) 238.54(4) 50.54(6) 28.03(4) 348.93(2) 69.39(9) 161.702 (9) 250.70 (9) 32.95(9) 55.16(7) 270.335(6) 300.38 (8) 361.79 (5) na
Ex-h

0+

159.09(8) 264.87(7) 236.47 (4) 50.51(6) 28.25(4) 347.34(2) 70.19(9) 170.87(9) 265.92(9) 32.99 (9) 55.45(7) 136.5(6) 299.56 (8) 360.92(5) na
Ex-h

MinMin

158.92(8) 267.77(7) 235.59 (4) 50.78(6) 28.03(4) 348.22(2) 69.91 (9) 168.10(9) 292.20(9) 33.15(9) 55.03(7) 258.38(6) 301.6(8) 366.232 (5) na
DC-h

0

163.9(8) 270.56(7) 241.5175(4) 50.71(6) 28.22(4) 354.515 (2) 68.40 (9) 153.12(9) 252.48(9) 33.26(9) 55.53(7) 269.71(6) 301.88 (8) 363.396(5) na
DC-h

0

+ 70.70 (8) 92.08(8) 73.55 (4) 41.72(6) 17.39(4) 194.64(3) 38.73(9) 88.20(9) 134.91(9) 30.16(9) 51.1(8) 136.5(6) 236.21 (9) 260.98(5) 1504.65 (1)
DC-h

MinMin

221.40 (8) 332.70(7) 271.69 (4) 77.1 (6) 36.41(3) 363.48 (2) 6.7(10) 30.18(10) 88.82(8) 36.85(9) 88.82(8) 258.38(6) 192.6(9) 243.89(5) 1117.4 (1)
BFD-h

0

157.38 (8) 260.80(7) 234.31 (4) 50.35 (6) 28.07(4) 352.24(2) 69.54 (9) 153.9(9) 285.86(9) 32.99(9) 55.03(7) 267.64 (6) 302.63(8) 360.86(5) na
BFD-h

0+

68.21(8) 88.01(8) 70.25 (7) 41.62 (6) 17.16(4) 118.17(3) 40.35 (9) 85.58(9) 160.87(9) 29.51(9) 50.9(8) 188.29(6) 238.28 (9) 258.64 (5) 1465.81 (1)
BFD-h

MinMin

216.39(8) 325.32(7) 265.94(4) 74.36 (6) 35.39(3) 354.85(2) 60.29 (9) 135.01 (9) 237.40(9) 36.85(9) 89.05(8) 256.25(6) 176.62(9) 231.17(5) 1042.54(1)

Table 1: Running time and number of instances solved for the optimal solvers

in expected cost increases with the budget increase, demon-
strating the applicability of the UMD problem.

Table 1 compares solutions’ performance. Each row rep-
resents a solver and heuristic pair. Results are separated by
domain and budget, depicting the average running time for
problems solved by all approaches for a given budget and the
number of instances solved in parenthesis. The dominating
approach for each row (indicating a domain and budget) is
emphasized in bold. In all case, the use of informed search
outperformed the exhaustive approach on all domains. How-
ever, the dominating heuristic approach varied between do-
mains, and for TIRE also between budget allocation.

Conclusions and Discussion
We presented a general model for redesigning stochastic en-
vironments to maximize system utility. Utility functions for
agents and system may be the same, aligned, or completely
different. Extending earlier works, we show how two differ-
ent models, one for goal recognition design, and the other
for maximizing agent utility, can be considered as special
cases of the general model. We then presented a general
method for solving UMD problems using informed heuristic
search. For settings where agents and system share the util-
ity function, we presented an approach to produce admissi-
ble estimations and a compilation-based method that embeds
design into the definition of a planning problem. Our empir-
ical evaluation supports the feasibility of the approaches and
shows substantial utility gain on all evaluated domains.

In future work, we will explore creating tailored heuris-
tics to improve planner performance, extending the model
to deal with partial observability using POMDPs, as well
as automatically finding possible modifications, similarly to
(Göbelbecker et al. 2010). In addition, we will extend the
offline design paradigm, by accounting for online design that
can be dynamically applied to a model.

References
Richard Bellman. A markovian decision process. Indiana Univ.

Math. J., 6:679–684, 1957.
Dimitri P. Bertsekas. Dynamic programming and optimal control,
volume 1. Athena Scientific Belmont, MA, 1995.
Blai Bonet and Héctor Geffner. mgpt: A probabilistic planner
based on heuristic search. Journal of Artificial Intelligence Re-

search, 24:933–944, 2005.
Thomas Eiter, Esra Erdem, Michael Fink, and Ján Senko. Updating
action domain descriptions. Artificial intelligence, 2010.
Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael
Brenner, and Bernhard Nebel. Coming up with good excuses:

What to do when no plan can be found. Cognitive Robotics,
(10081), 2010.
Andreas Herzig, Viviane Menezes, Leliane Nunes de Barros, and
Renata Wassermann. On the revision of planning tasks. In Pro-

ceedings of the Twenty-first European Conference on Artificial In-

telligence, ECAI’14, 2014.
Robert C Holte, Maria B Perez, Robert M Zimmer, and Alan J
MacDonald. Hierarchical a*: Searching abstraction hierarchies ef-
ficiently. In AAAI/IAAI, Vol. 1, pages 530–535. Citeseer, 1996.
Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cas-
sandra. Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1):99–134, 1998.
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recognition de-
sign for non optimal agents. In Proceedings of the Conference of

the American Association of Artificial Intelligence (AAAI 2015).
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recognition de-
sign with non oservable actions. In Proceedings of the Conference

of the American Association of Artificial Intelligence (AAAI 2016).
Sarah Keren, Avigdor Gal, and Erez Karpas. Goal recognition de-
sign. In ICAPS Conference Proceedings, June 2014.
Sarah Keren, Avigdor Gal, and Erez Karpas. Privacy preserv-
ing plans in partially observable environments. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI

2016), July 2016.
Andrey Kolobov Mausam. Planning with markov decision pro-
cesses: an ai perspective. Morgan & Claypool Publishers, 2012.
M Viviane Menezes, Leliane N de Barros, and Silvio
do Lago Pereira. Planning task validation. In Proc. of the ICAPS

Workshop on Scheduling and Planning Applications, 2012.
Nils J Nllsson. Principles of artificial intelligence. TiogaSpringer

Verlag. Palo Alto. Calif, 1980.
Judea Pearl. Heuristics: intelligent search strategies for computer
problem solving. 1984.
Tran Cao Son, Orkunt Sabuncu, Christian Schulz-Hanke, Torsten
Schaub, and William Yeoh. Solving goal recognition design using
asp. In Proc. AAAI Conf. on Artificial Intelligence (AAAI), 2016.
Christabel Wayllace, Ping Hou, William Yeoh, and Tran Cao Son.
Goal recognition design with stochastic agent action outcomes. In
Proceedings of the International Joint Conference on Artificial In-

telligence (IJCAI 2016), July 2016.
Sung Wook Yoon, Alan Fern, and Robert Givan. Ff-replan: A
baseline for probabilistic planning. In ICAPS, volume 7, pages
352–359, 2007.
Hakan LS. Younes and Michael L. Littman. Ppddl1. 0: The lan-
guage for the probabilistic part of ipc-4. In Proc. International

Planning Competition, 2004.

