
Toward Combining Domain Theory and Recipes in Plan Recognition

Rogelio E. Cardona-Rivera
Department of Computer Science
North Carolina State University

Raleigh, NC 27695 USA
recardon@ncsu.edu

R. Michael Young
School of Computing

University of Utah
Salt Lake City, UT 84112 USA

young@cs.utah.edu

Abstract

We present a technique to further narrow the gap between
recipe-based and domain theory-based plan recognition
through decompositional planning, a planning model that
combines hierarchical reasoning as used in hierarchical task
networks, and least-commitment refinement reasoning as
used in partial-order causal link planning. We represent
recipes through decompositional planning operators and use
them to compile observed agent actions into an incomplete
decompositional plan that represents them; this plan can
then be input to a decompositional planner to identify the
recognized plan-space plan. Our model thus synthesizes
the heretofore disparate recipe-based and domain theory-
based plan recognition variants into a unified knowledge
representation and reasoning model.

Introduction
Plan recognition is a form of activity recognition (Suk-
thankar et al. 2014) that attempts to predict the future
behavior of an intelligent agent given a sequence of
observations of that agent’s past behavior. Plan recognition
assumes a priori that there exist a set of possible goals that
an agent cares to achieve, and given a sequence of agent
action observations, a plan recognizer attempts to identify:
a) the goals that explain an agent’s observed actions, and
b) the actions the agent will effect in pursuit of those goals.

Historically, plan recognition systems have relied on
plan libraries, which encode a collection of recipes (goal-
plan pairs) that record likely actions toward assumed goal
states (Carberry 2001). Recent work on plan recognition
has explored alternatives to the library-based model;
e.g. planning-based recognizers that rely on a domain
theory (Ramı́rez and Geffner 2009).

However, there are instances where recipes are still
useful constructs in the plan recognition task. For example,
if we were asked to recognize the plan of an agent engaged
in a cyber-attack, we would need to identify typical and not
necessarily optimal plans of the agent, who is presumed to
want to avoid detection (Geib and Goldman 2001; Buchanan
2016). Further, recipes can be used to capture abstract or
thematic notions of an agent’s activity that could explain

Copyright c� 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more than just an agent’s plans for subsequent activity, such
as their intent (Lesh, Rich, and Sidner 1999).

Ideally, we want to retain the flexibility, generality,
and scalability of the domain theory-based approach and
the representation of typical non-optimal action sequences
afforded by library-based approach. In this paper we outline
a plan recognition model, which enables just that.

Contributions We present the following technique to
combine domain theory-based and recipe-based plan
recognition: compile the observations of an agent into
a partial plan that a decompositional planner can ad-
dress during planning. Decompositional planning combines
hierarchical reasoning as discussed in hierarchical task
networks (HTNs) (Erol, Hendler, and Nau 1994) and least-
commitment refinement reasoning as discussed in partial-
order causal link planning (Weld 1994) in a unified
knowledge representation, and a sound and complete
reasoning procedure (Young, Pollack, and Moore 1994).

For this technique to work, we introduce an algorithm
that can compile the observations into a sound but
incomplete decompositional plan. This decompositional
plan is then used to seed a decompositional planning
process. To anticipate our later discussion, our technique
proposes using composite action schemata and associated
decomposition schemata (which decompose a composite
action into more primitive actions) to represent recipes;
collectively, composite actions and associated primitive
actions achieved through decomposition enable formulating
plan recognition recipes in a general manner (Kautz and
Allen 1986). These recipes are used in a procedure
that transforms observed agent actions into goals that a
decompositional planner must address during planning; i.e.
into flaws that are refined (Kambhampati, Knoblock, and
Yang 1995) by the decompositional planner.

Further, we present a commentary on our proposed
compilation procedure as well as a detailed walk-through
of it in a motivating context: plan-recognition in a cyber-
security domain.

Related Work
Recent research has cast plan recognition as a planning
process (Ramı́rez and Geffner 2009; Sohrabi, Riabov, and
Udrea 2016), wherein the agent is assumed to behave

PRELIMINARY VERSION: DO NOT CITE

optimally: the agent’s observed actions are compiled as
additional goals (to the set of assumed goals) that a
recognizer must plan for at no extra cost using the planning
domain theory (planning domain paired with an initial state).
The use of a domain theory combined with state-of-the-art
planning algorithms make the plan recognition process more
general, flexible, and scalable.

The probabilistic approach proposed by Ramırez and
Geffner (2010) relaxes the assumption of agent optimality,
such that their domain theory-based recognizer admits non-
optimal action sequences, but it suffers from two limitations:
(1) it does not afford a way to record typical action
sequences in a particular domain as a way to guide the
recognizer, and (2) it assumes that we have access to a prior
distribution over assumed goals, which (if inaccurate) may
negatively bias the recognizer (Golan and Lumsdaine 2016).

Existing library-based approaches (e.g., Avrahami-
Zilberbrand and Kaminka 2005, Amir and Gal 2011) and
probabilistic grammar-based approaches (e.g., Geib and
Goldman, 2011) fail to account for how individual actions
have more than one effect; an action contributes to more
than just the parent action or rule it belongs to. Asserting
an action with multiple effects (in the STRIPS-sense) can
enable an action sequence that does not fit neatly into a
library recipe, nor a grammar rule. Further, while acyclic
libraries and grammars can be compiled into a domain
theory that represents them (Lekavỳ and Návrat 2007;
Ramirez and Geffner 2016), the compilation technique
produces a domain theory PL for a library L that cannot
be effectively combined with a non-library domain theory
PT to perform plan recognition. This is because the logical
language (i.e. fluents) used in the domain theory PL can
express relations between actions only in terms of the
hierarchy in the library L. Since PT ’s fluents are different
from PL’s, they cannot be combined in one plan recognition
system because the approaches are using two different
(logical) languages.

To date, there exists no plan recognition system that
can combine a domain theory and a plan library in a
principled manner for the production of a recognized plan.

Combining Domain Theory and Recipes
In this section, we (1) introduce the decompositional
planning model, (2) present an example illustrating the
intuition behind our technique, (3) discuss a compilation
procedure that enables using the technique, and (4) reflect
on the technique’s overall strengths and weaknesses.

Decompositional Planning
The formal model of decompositional planning we adopt
is taken from DPOCL, a decompositional partial-order
causal link planning system previously developed by Young,
Pollack, and Moore (1994).

DPOCL is based on classical partial-order causal link
(POCL) planning (Weld 1994), which searches through
a graph in which nodes are partially specified plans and
arcs are plan-refinement operations that add constraints to
a partial plan (Kambhampati, Knoblock, and Yang 1995).

Refinements are carried out in a least-commitment style,
wherein the planner only adds a refinement that is strictly
needed to ensure plan soundness.

A partial plan is a partially-ordered sequence of
actions (Sacerdoti 1975). We adopt a STRIPS-like repre-
sentation for actions, where action step is identified by a
unique name, an action type (e.g. RUN, PICK-UP), a set of
preconditions, and a set of effects. Preconditions are literals
that must hold in the world prior to an action’s execution,
and effects are literals made true through the execution of the
action. For generality, literals in an action’s preconditions
and effects may contain variable terms; each may be bound
to a constant term in the domain.

Our model enables capturing action hierarchies. In
DPOCL, actions can be primitive or composite.
Definition 1 (Action Schema). An action schema is a
template for an action which can occur in a planning
domain. It is a tuple � = (T, P,E,#), where T is an action
type that identifies the action schema (e.g., “move,” “pick-
up”); P is a set of preconditions, literals that must be true
immediately before the action can be executed; E is a set
of effects, literals made true by the execution of the action;
and # is a label that identifies this schema as primitive or
composite. P and E can have variable terms to convey ideas
such as “move from ?x to ?y.”
An action schema is also known as an operator; we use both
interchangeably. An instantiated primitive action schema is
referred to as a primitive step and an instantiated composite
action schema is referred to as a composite step. Steps are
uniquely named instances of action schemata; each step is
assigned a unique label to distinguish that step from other
instances of the action schema.

A primitive step is directly executable in a DPOCL
planning domain (assuming its preconditions are satisfied),
whereas a composite step is not; a decomposition schema is
required to specify how the composite step is decomposed
into more primitive steps.
Definition 2 (Decomposition Schema). A decomposition
schema is a single-layer expansion of a composite step. It
is a tuple of the form � = (T,S⇤, B,�, LC), where T is an
action type; S⇤ is a set of pseudo-steps; B is a set of binding
constraints over the variable terms of the steps in S⇤; � is
a set of orderings over the steps in S⇤; and LC is a set of
causal links over the steps in S⇤.
In the same way that steps carry with them a label to
distinguish them from other instances of a specific operator,
so too do the steps of a decomposition schema carry with
them a label to distinguish them from other instances of the
same operator in the schema; this is why they are referred
to as pseudo-steps in Definition 2. During plan generation,
each pseudo-step will either be associated with another step
already in the plan (and given that step’s name), or will be
instantiated as a new step and given a unique name.

Each decomposition specifies a sub-plan whose ulti-
mate effect achieves the composite step being decomposed.
Despite being partial, they can not be made up of arbitrary
steps; each decomposition schema (1) contains a dummy
initial step s0 whose effects are the preconditions of the

parent step; (2) contains a dummy final step s1 whose
preconditions are the effects of the parent step; (3) has
ordering constraints ensuring that s0 precedes all other steps
in the sub-plan, and that s1 follows all other steps in the
sub-plan; and (4) each effect of s0 has a path of causal links
that terminates in precondition of s1.

During plan construction, a DPOCL planner adds steps
to the partial plan in order to guarantee two things.

First, for each step in the partial plan, all of the step’s
preconditions are true before it is executed, and not undone
between the moment at which the preconditions are true and
when they are needed. A precondition can be true in the
initial state or made true by the effect of an earlier step.
Causal links explicitly record these precondition satisfaction
relationships. A causal link connects two plan steps s1 and
s2 via a literal p, denoted s1

p�!s2, when s1 establishes a
condition p in the world needed by s2 to execute.

Second, if a composite step has been added to the
partial plan, it must be fully decomposed to the level of
primitive steps. Decomposition links explicitly record the
choice of decomposition used to refine a composite step. A
decomposition link connects three plan steps sc, sd0, and sd1,
denoted sd0 � sc � sd1, where sc is a composite step whose
decomposition is the partial sub-plan bounded by step sd0,
which encodes sc’s preconditions as its effects, and step sd1,
which encodes sc’s effects as its preconditions.

A plan is sound if its variable bindings and ordering
constraints are consistent. It is complete if it contains
no flaws (Kambhampati, Knoblock, and Yang 1995). A
flaw in DPOCL planning is one of three things: an open
precondition, a threatened causal link, or an unexpanded
composite step. An open precondition flaw is the case when
there exists a step in the partial plan with a precondition
that has not been established via a causal link. A threatened
causal link flaw is the case when there exists a step in the
partial plan that can possibly be ordered such that it undoes
a condition established via a causal link. An unexpanded
composite step flaw is the case when there exists a composite
step in the plan with no decomposition link that specifies its
sub-plan. The original DPOCL Planning Algorithm is not
presented due to space considerations, but is provably sound
and primitive complete1 (Young, Pollack, and Moore 1994).

Our Technique
Our technique combines domain theory (i.e. a planning
domain) and recipes in the production of a recognized
plan. Recipes are encoded using decompositional planning
data structures, which are added to the planning domain
definition. We assume to be working with a keyhole plan
recognizer, which does not account for any information
beyond the observed agent’s actions. As mentioned, recipe-
based plan recognition operates over a plan library, a set of
recipes that record likely actions toward assumed goal states.
Because recipes in our formulation are in the context of plan-
space planning, recipe goals are framed as the effects of

1For every solution ⇡ to a planning problem where ⇡ only
contains primitive steps that are causal ancestors of the goal state,
DPOCL will produce a plan whose primitive steps are ⇡.

Observation 
Compilation

Planning

Associate with
new recipe
Associate with
existing recipe
Convert to open
goal

Decompositional
Planning with
non-empty initial
plan

chooseObserved 
Actions

Observation 
Goals

Recognized 
Plan

Figure 1: Illustration of the proposed technique for combining
domain theory and recipes in plan recognition. Arrows represent
information and boxes represent algorithmic modules. Observed
actions are transformed into an incomplete DPOCL plan that is
completed by a planner to produce a recognized plan.

composite action schema, as in Definition 1. A recipe is thus
a pairing of a composite action schema and a decomposition
schema. Formally:
Definition 3 (Recipe). A recipe is a tuple R = (�, �),
where � = (T, P,E,#) is a composite action schema as in
Definition 1; and � = (T,S⇤, B,�, LC) is a decomposition
schema as in Definition 2, such that the action type T of both
� and � is equivalent.

Recipes in DPOCL are encoded implicitly via a
planning domain; every combination of compatible (i.e.
of the same action type) composite action schema-
decomposition schema pairs in the domain is a recipe. Given
a planning domain that includes recipes, and a sequence
of observed agent actions, our technique proceeds in two
pipelined phases as illustrated in Figure 1:
Phase 1: Compiling the observed agent’s actions into an

incomplete DPOCL plan that represents those
actions.

Phase 2: Using a DPOCL planner to refine the plan
produced in Phase 1 until no flaws remain.

In this paper, we present an algorithm that accomplishes
Phase 1, enabling our overall technique of combining
domain theory and recipes. As discussed, Phase 2 is
accomplished by a DPOCL planner; we use the Longbow
planning system (Young 1994).

Example To illustrate the intuition behind our approach,
we apply our technique to our motivating context: plan
recognition in a cyber-security domain. In particular, we
assume to be attempting to recognize the plan of an agent
engaged in a cyber-attack, as illustrated in Figure 2. The
phases in a cyber-attack are considered to be composite in
the sense that there are multiple candidate ways they can be
achieved (Buchanan 2016).

In this example, we process the observation sequence
in Figure 3 one action at a time. When we dequeue the
first observed action “open net ports” from the sequence,
our technique attempts to recognize the action as part of
a recipe in the library. This association process looks for
every recipe in the library whose decomposition contains
a pseudo-step of the same action type as the observation.
Assume that our technique finds one such recipe, namely
R = (“establish foothold”, “foothold-through-malware”),
whose decomposition “foothold-through-malware” contains
a pseudo-step of type “open net ports.” Once found,

Initial 
Compromise

Establish 
Foothold

Complete  
Mission

Initial 
Recon

Escalate  
Privileges

Internal 
Recon

Move  
Laterally

Maintain 
Presence

Figure 2: One interpretation of the Cyber-Attack life-cycle. Each
stage represents a composite action schema with multiple possible
more primitive realizations (i.e. decomposition schemata). The
fourth stage (from left to right) presents a loop of abstract actions,
which may continue for an undetermined period of time.

install 
backdoor

open net
ports

Observation Sequence

Time

trigger cross-  
side script

Figure 3: An example sequence of agent observations in a cyber-
security domain. The black boxes represent primitive actions of the
named type (i.e. types are “open net ports,” “install backdoor,” and
“trigger cross-side script” respectively), and are processed in order
from left to right. Dotted circles represent preconditions, and filled-
in circles represent effects.

this recipe is added to our empty plan-space plan with
the respective pseudo-step replaced for the observed
action, as illustrated in Figure 4a. The empty partial
plan is updated by: (1) adding the composite action
“establish foothold,” (2) adding the decomposition schema
“foothold-through-malware” (with corresponding pseudo-
steps, bindings, orderings, and causal links), (3) replacing
the pseudo-step “open net ports” with the observation
of the same type, and (4) adding a decomposition link
sd0 � “establish foothold”

�
sd1 where sd0 and sd1 are

“start malware sub-plan” and “end malware sub-plan,”
respectively. The remaining pseudo-steps “install backdoor,”
“enter,” and “download malware” remain as pseudo-steps
that are available for integration of future observations.

When we dequeue the second observed action “install
backdoor” from the sequence, our technique (instead of
associating it with a new recipe as before) matches it with
the recipe constructed previously by simply replacing the
corresponding pseudo-step in the action, as illustrated in
Figure 4b. Further, because “install backdoor” was observed
after “open net ports,” an ordering is added to the plan to
reflect as such.

When we dequeue the third observed action “trigger
cross-side script” from the sequence, our technique cannot
associate it with an existing recipe, as illustrated in
Figure 4c. Assume that our technique cannot find an
applicable recipe for this action; in this case, we simply add
it to the partial plan and introduce an ordering to the partial
plan to reflect it coming after the action “install backdoor.”

At this point, we have run out of observations and have
constructed a consistent but incomplete DPOCL plan. This
plan is then used to initialize a search by a DPOCL planner,

which should ensure it becomes sound and complete.

Compiling Observations We present an observation
compilation procedure for the first phase of the technique
illustrated in Figure 1. The second phase uses a DPOCL
planner, originally defined by Young, Pollack, and Moore
(1994). The compilation builds upon Ramı́rez and Geffner’s
intuition of observations as goals, and leverages the framing
of goals as islands (Hayes-Roth and Hayes-Roth 1979):
intuitively, we compile observations of actions into a
DPOCL plan with which to seed a plan-space planning
process. This compiled plan represents an intermediate state
of the search (plan-)space through which all solutions to
the planning problem must pass. Thus, starting a DPOCL
planner with a non-initial plan controls the form of the
solutions the planner generates, since it effectively prunes a
portion of the search space that would be accessible from
the (more general) initial plan. Conceptually, the pruned
portions represent plans that would be incompatible with the
observations that the plan recognizer takes as ground truth
of activity in a domain.

The compilation procedure we propose is described in
the algorithm listing. The algorithm begins by initializing
the input plan if it is empty (Step 0), which will typically
only occur on the initial call to the algorithm. The recursive
termination criteria is then checked (Step 1): if the plan
so far is inconsistent (i.e. if the orderings lead to a
cycle or the bindings afford a mapping between opposite
literals), the algorithm fails; otherwise, if there are no
further observations to compile, it returns the DPOCL plan.
However, if there are further observations to check (Step 2),
then it dequeues the next observation in the input sequence,
and does one of three things: (A) instantiates a new recipe
with a pseudo-step that could be swapped for the observation
(and swaps the pseudo-step), (B) finds an instantiated recipe
that contains a pseudo-step that could be swapped for the
observation (and swaps the pseudo-step), or (C) simply
adds the observation to the plan. In all cases, the algorithm
ensures that if there are already other observations in the
plan that temporally preceded (i.e. appeared before) the
observation under consideration within the input sequence,
then ordering constraints are added to the plan to reflect as
such (Step 3). The procedure then makes a recursive call to
handle the rest of the observations (Step 4). This algorithm
produces a consistent, but not complete DPOCL plan, as
evidenced by the fact that Step 1 does not admit inconsistent
plans, and returns failure if such a plan is detected.

Given a sequence of observations and a domain theory,
a DPOCL plan recognizer is a system that: (1) compiles
observations into a DPOCL plan that represents them as
in Algorithm , and (2) uses the compiled DPOCL plan as
input to a DPOCL planner (Young, Pollack, and Moore
1994), which further refines the input plan to make the plan
complete. The compilation process in our technique will
produce a consistent DPOCL plan with flaws that will be
refined (Kambhampati, Knoblock, and Yang 1995) by the
DPOCL planning process to produce a recognized plan. If
a flaw can never be refined at the planning stage, the plan
recognition system will produce no recognized plan.

foothold-through-malware

establish 
foothold

download  
malware

open net
ports

start malware  
sub-plan

enterinstall 
backdoor

end malware  
sub-plan

After processing open net ports:
(Example of Recipe Recognition)

(a) Illustration of DPOCL-OBSERVATION-COMPILATION Step 2.A.

foothold-through-malware

establish 
foothold

download  
malware

open net
ports

start malware  
sub-plan

enterinstall 
backdoor Ordering added: 

open net ports ⧼ install backdoor

end malware  
sub-plan

After processing install backdoor: 
(Example of Recipe Matching)

(b) Illustration of DPOCL-OBSERVATION-COMPILATION Step 2.B.

foothold-through-malware

establish 
foothold

download  
malware

open net
ports

start malware  
sub-plan

enterinstall 
backdoor Ordering added: 

install backdoor ⧼ trigger cross-side script

end malware  
sub-plan

After processing trigger cross-side script: 
(Example of Plan-Space Conversion) trigger cross-  

side script

(c) Illustration of DPOCL-OBSERVATION-COMPILATION Step 2.C.

Figure 4: Evolution of a partial decompositional plan during observation compilation. The above sub-figures illustrate what happens after
dequeueing the first (a), second (b), and third (c) observation illustrated in Figure 3. In each figure, the gray box “establish foothold” represents
a composite step, black boxes represent primitive steps, and white boxes represent pseudo-steps of the decomposition schema “foothold-
through-malware” (itself denoted as a partially-dotted bounding box). The recipe being applied in this observation compilation process is
R = (“establish foothold”, “foothold-through-malware”) and is represented implicitly. The dotted arrows that go from the composite action
to the dummy actions “start malware sub-plan” and “end malware sub-plan” represent the decomposition link that records how “establish
foothold” is realized via the (decomposition) sub-plan “foothold-through-malware.” The black arrows that go from effects of actions (black
circles) to preconditions of other actions (dotted circles) represent causal links.

Algorithm A DPOCL Observation Compilation Algorithm,
which compiles a sequence of observed agent actions into
a consistent, but not complete DPOCL plan that represents
them. During generation, the algorithm can apply recipes
that must be resolved during DPOCL plan recognition
planning.
Input:

• A planning problem P = (D, i, g), where D is a domain model
that specifies the available logical fluents L, composite action
schemata ⇤, and decomposition schemata �; i is a set of fluents
that define the initial state; and g is a set of fluents that define
the goal state the agent is assumed to pursue.

• ⇡ = (S, B,�, LC , LD), a DPOCL plan.
• O = [o0, . . . , on], a sequence of observations such that

8oi 2 O, oi’s action schema exists in ⇤ 2 D.

Output: ⇡ = (S, B,�, LC , LD), a DPOCL plan that represents
the observed actions.

procedure DPOCL-OBSERVATION-COMPILATION(P,⇡, O)
0. Initialization If ⇡ is empty, initialize it as: S = {s0, s1},
�= {s0 � s1}, B = LC = LD = {?}, where s0’s effects
are the fluents in i, and s1’s preconditions are the fluents in g.
1. Termination: If B or � is inconsistent, fail. Else, if O is
empty, return ⇡.
2. Observation Compilation: Let oi (O.dequeue().
Nondeterministically choose one of the following:
A. Recipe Recognition

A.1 Recipe Selection: Nondeterministically choose a
recipe R = (�, �), such that � contains at least one
pseudo-step t 2 S⇤ of the same action type as oi (if
no such recipe exists, backtrack). Replace t/oi in �.

A.2 Implied Step Addition: Let ⇡0 be a DPOCL plan
(S 0, B0,�0, L0

C , L
0
D), where:

• S 0 (S [S⇤
� [{�} . Including pseudo-steps.

• B0 (B [B�

• �0(� [��

• L0
C (LC [LC�

• L0
D (LD [{

�
�, t�0, t

�
1
�
}

B. Recipe Matching
B.1 Recipe Assignment: Let ⇡0 be a DPOCL plan

(S 0, B0,�0, L0
C , L

0
D) such that ⇡0 = ⇡. Nondetermin-

istically choose a pseudo-step t 2 S0 of the same action
type as oi (if no such step exists, backtrack). Replace
t/oi in S 0, and let B0 (B0 [{oi’s bindings}.

C. Plan-Space Conversion
C.1 Observation Transformation Let ⇡0 be a plan

(S 0, B0,�0, L0
C , L

0
D), where:

• S 0 (S [{oi}
• B0 (B [{oi’s bindings}
• �0(� [{(t0 � oi), (oi � t1)}

. Order it between the initial and final steps.
• L0

C (LC , L0
D (LD

3. Relative Observation Ordering:
If there exists an observation oi�1 2 S 0 that is sequentially prior
to oi in O, then let �0(�0 [{(oi�1 � oi)}.
4. Recursive Invocation:
Call DPOCL-OBSERVATION-COMPILATION(P,⇡0, O).

end procedure

Comments on our Compilation Algorithm The compi-
lation algorithm was intentionally designed to be very gen-
eral, because different applications could require different
control strategies for deciding how to perform the various
open decisions.

Firstly, the decision of Step 2 (Observation Compi-
lation) is left open; that is, observation compilation can
delegate to any of three sub-procedure branches as discussed
earlier. Each branch adds an observation to the plan in a
different way; namely, by applying a new recipe, by using an
existing recipe, or by not using a recipe at all. Regardless of
which is desirable for the application context, our algorithm
can accommodate using all three in an interleaved fashion.

Secondly, the decision of Step A.1 (Recipe Selection)
is left open; that is, recipe selection can place the
observation in any recipe that is applicable (i.e. which
contains a decomposition schema with a pseudo-step of
the observation’s action type). An example of using a
particular control scheme is the work by Lesh, Rich, and
Sidner (1999), which uses the concept of a user’s focus
during human-computer interaction to limit the range of
recipes available to predict the user’s intended plan.

Thirdly, the decision of Step B.1 (Recipe Assignment)
is left open; that is, recipe assignment can replace any
pseudo-step of the same action type as the observation. This
would be useful to explore various alternatives that could
explain the observed action, since different pseudo-steps of
the same type might serve different purposes in the schema.

Because the compilation does not produce a complete
plan, the DPOCL plan recognition process is dominated by
the performance of the DPOCL planning algorithm. It is
possible that decisions taken at the observation compilation
phase make it more difficult for the plan recognition process
at the planning phase. If the flaws that are introduced by
the recipes are impossible to refine, the plan recognition
process would have to backtrack beyond the planning
phase to the compilation phase, which makes the process
potentially computationally complex. In future work, we
hope to identify informed control strategies for Steps 2,
A.1, and B.1 that minimize the amount of overall work
needed to find a plan to explain an agent’s observed actions.
Observation compilation is executed once for every goal
the agent is assumed to have. Thus, the identification of
informed control strategies is a fruitful area of future work
for this model of plan recognition.

Discussion
This paper presents a technique for combining recipe-based
and domain theory-based reasoning during plan recognition.

Importantly, the work we propose here is a general
case of plan recognition as plan-space planning, which
itself has not previously been discussed. If we disallow
composite action schemata and introduce no decomposition
schemata, then our compilation algorithm would have no
recipes to apply, thereby fixing the choice of Step 2 to the
C branch. Transitively, the DPOCL planner would fall back
to POCL planning as discussed by Young, Pollack, and
Moore (1994). Thus, our formulation here also paves the

way for researchers interested in plan recognition via plan-
space planning who operate in non-hierarchical domains.

We do not assume that the agent is necessarily optimal,
a condition that is typically operationalized in terms of the
minimum cost of the recognized plan. However, what that
means for our model is that the DPOCL planner could
potentially fix flaws introduced during compilation, but
not reuse compiled information in the computation of the
solution plan. Plainly, the steps added to the plan during
observation compilation would appear in the solution plan
only because they were observed to have occurred, not
because they are on the agent’s plan to solve an assumed
goal (unlike models which assume optimality). To account
for this, we assume that the agent acts with intent, a
condition that must be enforced by the DPOCL planner.
That is, the effects of steps added to the compiled plan
must be intended, as defined by Young and Moore (1994):
informally, an effect is intended if it is used in a causal link,
and the step that asserts that effect is a causal ancestor of the
final step of the plan. To assume that the agent must always
act with intent constrains the kind of activity our model can
effectively recognize; the actions of exploratory agents, for
example, will likely not be well-recognized in our model (for
which additional modifications would be needed).

Another difference relative to prior work of our plan
recognition model is the form of the recognized plan that is
output. Due to the plan-space oriented nature of the DPOCL
planning process, the output of the DPOCL plan recognition
pipeline is a partial plan, which represents a family of plans
that satisfy the constraints identified during the refinement
process (Kambhampati, Knoblock, and Yang 1995). This
is unlike most prior work on plan recognition, which only
produces a single recognized plan as output. A notable
exception is the work by Geib and Goldman (2011), which
admits the possibility of an agent pursuing multiple plans;
their work is unlike ours because we produce an artifact that
is a family of totally ordered and ground plans (all those
compatible with the partial plan), whereas their formalism
computes a probabilistic distribution of potentially pursued
totally ordered plans.

In our example, we constrained the observation com-
pilation to work over primitive steps exclusively. However,
there is nothing in our formalism that would prevent the
compilation from working with recognized composite steps.
If the planning domain contains decomposition schemata
that contain composite steps as part of the sub-plan, then the
same reasoning procedure can introduce a higher level of
hierarchy into the recognized plan. One limitation, however,
is that these added levels of hierarchy must be triggered
by the observation of a composite step. That is, once a
recipe’s decomposition schema has been added to the partial
plan by our algorithm, the procedure does not further check
to see if that recipe’s composite action schema can itself
form a part of another decomposition in the partial plan. An
artificial solution to this limitation is to enqueue the recipe’s
composite action schema into the queue of observations, but
we have not explored the potential ramifications of doing so.

The immediate next step is to empirically evaluate our
plan recognition system. While this plan recognition model

can be built atop the Longbow decompositional planning
system (Young 1994), we are interested in extending the top
POCL performer of the 3rd International Planning Compe-
tition (Long and Fox 2003), VHPOP (Younes and Simmons
2003) to handle decompositional reasoning. VHPOP’s built
in support for heuristic guidance of plan-space search sug-
gests that it would be amenable to incorporating recently-
developed hierarchy-related heuristics (e.g., Bercher, Keen,
and Biundo, 2014) that allow us to further speed up total
recognition time. Empirical evaluation, however, remains
challenging due to lack of agreed upon domains and metrics
for plan recognition (Goldman et al. 2011).

Conclusion
The work we present proposes (to our knowledge) the
first synthesis of recipe-based and planning-based plan
recognition in a unified knowledge representation, and
sound and (primitive) complete decompositional planning
reasoning procedure. Our synthesis is straightforward and it
enables narrowing the gap between the existing and well-
established community of recipe-based plan recognition
researchers, and the more nascent but rapidly growing
community of planning-based plan recognition researchers.

Acknowledgements
We thank Miquel Ramı́rez as well as the members of the
Liquid Narrative Group at NC State for their insightful
comments on earlier versions of this paper.

References
Amir, O., and Gal, Y. 2011. Plan recognition in virtual
laboratories. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, 2392–2397.
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2005. Fast
and complete symbolic plan recognition. In Proceedings
of the 19th International Joint Conference on Artificial
Intelligence, 653–658.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In 7th
Annual Symposium on Combinatorial Search.
Buchanan, B. 2016. The life cycles of cyber threats. Survival
58(1):39–58.
Carberry, S. 2001. Techniques for Plan Recognition. User
Modeling and User-Adapted Interaction 11(1-2):31–48.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP:
A Sound and Complete Procedure for Hierarchical Task-
Network Planning. In Proceedings of the 2nd International
Conference on Artificial Intelligence Planning Systems,
249–254.
Geib, C. W., and Goldman, R. P. 2001. Plan recognition
in intrusion detection systems. In Proceedings of the
DARPA Information Survivability Conference & Exposition
II, volume 1, 46–55. IEEE.
Geib, C., and Goldman, R. 2011. Recognizing plans with
loops represented in a lexicalized grammar. In Proceedings
of the 25th AAAI Conference on Artificial Intelligence, 958–
963.

Golan, A., and Lumsdaine, R. L. 2016. On the construction
of prior information – an info-metrics approach. In Essays
in Honor of Aman Ullah (Advances in Econometrics, Volume
36). Emerald Group Publishing Limited. 277–314.
Goldman, R. P.; Geib, C. W.; Kautz, H.; and Asfour, T. 2011.
Plan Recognition (Dagstuhl Seminar 11141). Dagstuhl
Reports 1(4):1–22.
Hayes-Roth, B., and Hayes-Roth, F. 1979. A Cognitive
Model of Planning. Cognitive Science 3(4):275–310.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995.
Planning as refinement search: a unified framework for eval-
uating design tradeoffs in partial-order planning. Artificial
Intelligence 76(1):167–238.
Kautz, H. A., and Allen, J. F. 1986. Generalized Plan
Recognition. In Proceedings of the 5th National Conference
on Artificial Intelligence, 32–37.
Lekavỳ, M., and Návrat, P. 2007. Expressivity of
STRIPS-like and HTN-like planning. In Proceedings of
the KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications, 121–130. Springer.
Lesh, N.; Rich, C.; and Sidner, C. L. 1999. Using
plan recognition in human-computer collaboration. In
Proceedings of the 7th International Conference on User
Modeling, 22–32.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. Journal of Artificial
Intelligence Research 20:1–59.
Ramı́rez, M., and Geffner, H. 2009. Plan Recognition as
Planning. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, 1778–1783.
Ramırez, M., and Geffner, H. 2010. Probabilistic
plan recognition using off-the-shelf classical planners. In
Proceedings of the 24th AAAI Conference on Artificial
Intelligence, 1121–1126.
Ramirez, M., and Geffner, H. 2016. Heuristics for
planning, plan recognition and parsing. arXiv preprint
arXiv:1605.05807.
Sacerdoti, E. D. 1975. The nonlinear nature of plans. In
Proceedings of the 4th International Joint Conference on
Artificial Intelligence, 206–214.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016.
Plan Recognition as Planning Revisited. In Proceedings
of the 25th International Joint Conference on Artificial
Intelligence, 3258–3264.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and
Goldman, R. P., eds. 2014. Plan, Activity, and Intent
Recognition: Theory and Practice. Elsevier.
Weld, D. S. 1994. An Introduction to Least Commitment
Planning. AI Magazine 15(4):27.
Younes, H. L., and Simmons, R. G. 2003. VHPOP:
Versatile heuristic partial order planner. Journal of Artificial
Intelligence Research 20:405–430.
Young, R. M., and Moore, J. D. 1994. DPOCL:
A Principled Approach to Discourse Planning. In
Proceedings of the Seventh International Workshop on

Natural Language Generation, 13–20. Association for
Computational Linguistics.
Young, R. M.; Pollack, M. E.; and Moore, J. D. 1994.
Decomposition and Causality in Partial-order Planning. In
Proceedings of the Conference on Artificial Intelligence
Planning Systems, 188–194.
Young, R. M. 1994. A developer’s guide to the Longbow
discourse planning system. Technical report, University of
Pittsburgh.

