
Dynamic Goal Recognition Using Windowed Action Sequences
David Henri Ménager

Department of Electrical Engineering and Computer Science
University of Kansas, Lawrence, KS 66045

dhmenager@ku.edu

Dongkyu Choi
Department of Aerospace Engineering

University of Kansas, Lawrence, KS 66045
dongkyuc@ku.edu

Michael W. Floyd and Christine Task
Knexus Research Corporation
National Harbor, MD 20745

{michael.floyd, christine.task}@knexusresearch.com

David W. Aha
Naval Research Laboratory

Washington, DC 20375
david.aha@nrl.navy.mil

Abstract

For robots to work with humans as a team, they need to
be aware of what their teammates are doing. Since it is un-
realistic to expect humans to constantly communicate their
goals and intentions, it is crucial for the robots to accurately
and autonomously recognize their teammates’ goals. Further-
more, as these human–robot teams may perform a variety of
missions in dynamically changing contexts, the teammates’
goals may change suddenly without warning. Historically,
goal recognition systems have not directly addressed this is-
sue, but have predominantly focused on situations with static
goals. This paper presents a windowing strategy that enables
goal recognition systems to detect goal changes in a fast and
accurate manner. We describe this novel approach, and show
its benefits through an empirical study spanning three differ-
ent domains.

Introduction
Recent advances in robotics and artificial intelligence have
brought a variety of assistive robots designed to help hu-
mans accomplish their goals. However, many have limited
autonomy and lack the ability to seamlessly integrate with
human teams. One capability that can facilitate such human-
robot teaming is the robot’s ability to recognize its team-
mates’ goals, and react appropriately. This function permits
the robot to actively assist the team and avoid performing
redundant or counterproductive actions.

Goal recognition, like plan or intention recognition, is a
difficult process, and that difficulty is compounded when
goals change suddenly without warning. The majority of ex-
isting work has focused on recognizing static goals (Kautz
and Allen 1986; Baker, Saxe, and Tenenbaum 2009; Suk-
thankar et al. 2014; Borck et al. 2015), rather than expanding
goal recognition research into dynamic environments.

We describe a novel windowing approach that uses ex-
isting plan or goal recognition algorithms to rapidly detect
goal changes. Our approach constrains which environmental
states and actions are presented as inputs to a recognition al-
gorithm, and uses its output to determine when a goal change
occurs. This is beneficial because it allows the recognition
algorithm to reason over observations related to the current
goal, rather than those pertaining to previous ones.

Copyright c� 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the following sections, we first provide background on
goal recognition systems. We then explain our windowing
approach and describe an empirical evaluation in three do-
mains. Finally, we discuss related work, future research di-
rections, and a summary of our contribution.

Background
Our windowed goal recognition system operates indepen-
dently from the underlying goal recognition algorithm (i.e.,
it is algorithm agnostic). However, in this section we provide
background on goal recognition in order to better describe
how goal recognition algorithms operate. In goal recogni-
tion, the basic problem domain consists of the following:

• a set E of environment fluents;

• a state S that is a value assignment to those fluents;

• a set A of actions that describe potential transitions be-
tween states (with preconditions and effects defined over
E, and parameterized over a set of environment objects
O); and

• a set of disjoint goal conditions G ✓ S.

If a system begins in an initial state I 2 S and an actor per-
forms a sequence of actions [a0, a1, a2, . . . , ak] such that the
state a

k

(...a2(a1(a0(I)))) satisfies goal g 2 G, then we can
consider [a0, a1, a2, . . . , ak] to be a plan to achieve goal g.
The problem of goal recognition is then defined as follows:

Definition: Given a problem domain E, S, A, O, G de-
fined as above and an action sequence q, the goal recog-

nition problem is to determine, assuming q is a consecutive
sub-sequence of a plan to achieve some goal g, which goal
g 2 G is the most likely objective.

A variety of approaches may be taken to solve the
goal recognition problem. Traditionally, goal recognition as-
sumes that there is only one static goal throughout the dura-
tion of execution. Despite this assumption, researchers still
implicitly make claims about the number of environmental
fluents required in the recognition step, before meaningful
inference is made (Sukthankar et al. 2014). In this paper we
address this question directly and provide insight into where
further research can be made.

PRELIMINARY VERSION: DO NOT CITE



Figure 1: A diagram of windowed goal recognition wrapping
around a plan recognition or goal recognition algorithm.

Windowed Goal Recognition
Since traditional goal recognition algorithms are designed
to recognize static goals, when goal changes occur they pro-
vide inconsistent observations to the algorithms (i.e., some
observations of the old goal and some of the new goal). In
most situations, this results in the algorithms selecting the
goal with the strongest evidence to support it. If there is
significant evidence of the original goal (e.g., the agent had
been pursuing that goal for a long duration), the algorithms
may be unable to detect the new goal until there it has an
equivalent amount of evidence. For example, consider an ob-
served action sequence [a0, a1, . . . , am]. If [a0, . . . , am�1]
were performed when pursuing goal g1 whereas [a

m

] was
performed when pursuing goal g2, it is difficult to recognize
g2 as the goal because the majority of actions are related
to g1. If m is larger (i.e., the agent pursued g1 for a long
time), many more observations will be necessary before g2
can be successfully identified. To remedy this, we present a
windowing strategy that uses a subset of the action sequence
and restricts the input to the goal recognition algorithms.

Our approach operates by wrapping around existing goal
recognition algorithms. Figure 1 shows a windowing mod-
ule wrapping around a goal recognition component. This
is beneficial because it does not require any modifications
to the algorithms, and goal recognition algorithms can be
used interchangeably. The windowed goal recognition sys-
tem observes an agent performing a sequence of actions
A

obs

= [a0, a1, . . . , ak] and creates a sub-sequence A
win

of A
obs

that only contains the most recent observed ac-
tions. For example, if a window size of 3 is used, A

win

=
[a

k�2, ak�1, ak]. A
win

is then used as input to the goal
recognition algorithm, rather than the entire sequence of ac-
tions. Figure 2 shows windows that grow to a maximum size
of five (i.e., w1-w5) and shift (i.e., w6-w7) using an example
action sequence.

Using windowed goal recognition is advantageous for
three primary reasons. First, it does not depend on any par-
ticular plan recognition algorithm. Any algorithm that takes
as input a sequence of actions and outputs a recognized
goal can be used. This approach can also be used for al-
gorithms that reason over sequences of both actions and en-
vironment states, with the only modification being that win-
dows operate over action-state sequences rather than action
sequences. Second, the approach helps remove older obser-
vations that may be related to previous goals. This allows
for quicker goal change detection than if the entire action se-
quence is used. Third, the windowing approach provides an
upper bound on the number of actions provided as input to
the goal recognition algorithms. For real-time applications,
this helps to constrain the time spent on goal recognition.

Empirical Evaluation
To assess the benefits of our windowed goal recognition
strategy, we performed experiments with tasks in three do-
mains. In each, we consider three hypotheses:
H1: Windowing improves the performance of goal recogni-

tion systems in dynamic environments
H2: Windowing mechanism makes goal recognition perfor-

mance independent of the state–action sequence length
H3: Windowing works across different domains

In the first hypothesis we use two instances of the same
goal recognition system. Our windowing procedure wraps
around the first instance, and the second is left as-is. We
compare the windowed and non-windowed performance of
the goal recognition system and observe whether the win-
dowing procedure significantly increases its goal change de-
tection accuracy when compared to the non-windowed ver-
sion. In each domain, we analyzed the performance of the
windowed and non-windowed versions, while varying the
timing of a goal change within the state–action sequence.

For the second hypothesis we examine the performance of
a windowed goal recognizer subject to varying goal change
indexes, and varying number of goal changes in the executed
plan. We are interested in quantifying how long the system
takes to recover from incorrect goal detections, and measur-
ing the flexibility of the system under rapid goal changes.
For completeness we also examine the performance without
the window and compare the performance.

Lastly, we are interested in the generalization ability of
the windowing approach. We mean to create a system that
allows goal recognition systems to perform comparably in
different domains under the same system parameters. In
this section, we present the goal recognition algorithm and
briefly describe the three domains. Following this, we detail
the experimental setup, and present and discuss the results.

SET-PR
Single-agent Error-Tolerant Plan Recognizer, SET-PR (Vat-
tam, Aha, and Floyd 2014), is a fault-tolerant graph-
matching technique for goal recognition. We use this system
as our test case for which we built our windowing approach
because it gracefully handles missing and erroneous actions.
SET-PR uses a case-based approach that leverages a library
of canonical plans for achieving each of the goals in the do-
main. Both library plans and input action sequences are rep-
resented using Action Sequence Graphs (ASGs) (shown in
Figure 3). These graphs enable SET-PR to encapsulate infor-
mation about the patterns of relationships between actions
and objects in the environment independently of the exact
action ordering. The ASG represents objects in the environ-
ment and executed actions as nodes. Labeled directed edges
are added to connect action nodes and the nodes represent-
ing their parameter objects.

If an action sequence demonstrates similar patterns of ac-
tion/object connections to a canonical plan in the library,
then it may be a sub-sequence of that plan. The input ac-
tion sequence is matched against canonical plans in the li-
brary using a relaxed (multi-graph handling) version of the



w1
w2

w3
w4 w5

w5 w6 w7

actions

actions

window	size	growing	up	to	5

window	shifting	with	time

:	actions	observed :	actions	to	be	observed

Figure 2: A sample window growing and shifting on an ar-
bitrary action sequence.

VF2 graph-matching algorithm (Cordella et al. 2004). SET-
PR returns the similarity scores for each of the candidate
library plans, with the most similar plan being selected as
the most likely plan of the observed agent. The goal asso-
ciated with the selected plan is extracted and used by the
windowing approach to detect goal changes. Further details
on SET-PR may be found in Vattam, Aha, and Floyd (2014).

Evaluation Domains

We used three different domains for empirical evaluation.
The first one is a custom military domain called Autonomous

Squad Member (ASM) (Gillespie et al. 2015). This domain
has a simulated robotic agent that follows its human squad
members on combat reconnaissance missions. In the scenar-
ios we used, there are three human soldiers and a robot in
each squad. The soldiers can perform a variety of actions
like moving to a waypoint, following another soldier, gestur-
ing or speaking aloud to a soldier, assuming a defensive po-
sition, and taking a posture, in rich settings that include dif-
ferent entities, weapons, and geographic features. The robot
can observe the state and the actions of its teammates and
choose among its own possible actions relevant to the situa-
tion it has determined based on that information.

The other two domains are benchmark domains from
the International Conference on Automated Planning and
Scheduling (ICAPS) International Planning Competition
(IPC). The first one of these is Rovers, a domain with sim-
plified planetary rover missions. Each scenario happens on
a map represented as a connected graph, on which the rover
can move, sample soil, sample rock, drop collected sample
at its base, and communicate the test result. The second do-
main, Childsnack, involves an agent that serves sandwiches
to children. Depending on a child’s dietary restriction (i.e.,
gluten or gluten-free), the agent makes a sandwich with ap-
propriate contents, puts it on a tray, moves the tray to a table,
and serves the sandwich to the child.

LOCA

MEMBER1

A_0_MOVE_3,4

LOCSTART

A_0_MOVE_3,5

A_0_MOVE_1,3

A_0_MOVE_1,4

A_0_MOVE_1,5 A_0_MOVE_4,5ROUTE1

A_0_MOVE_1,2

A_0_MOVE_2,3

A_0_MOVE_2,4

A_0_MOVE_2,5

A_0_MOVE

A_0_MOVE_0,1

Figure 3: A sample Action Sequence Graph (ASG) from Au-
tonomous Squad Member domain.

Experimental Setup
In order to create plan recognition problems for evaluation,
we generated state–action sequences for various goals in
each domain. For example, in the ASM domain, we used
three scenarios that involve a single goal (investigating a
route), and three other scenarios that involve two goals (in-
vestigating a route and responding to a sniper). For both the
one-goal and two-goal variations, two scenarios were used
to generate canonical plans for SET-PR’s plan library, and
the other was used to generate testing plans.

Although we did not have the ability to generate more
problem scenarios in the ASM domain, we were able to ran-
domly generate valid problem descriptions for the two IPC
domains. Once we have problems generated, we used the
Fast Downward Planner (Helmert 2006) to compute plans
for these problems and get state–action sequences. In both
domains, the agent was placed in one of ten randomly gener-
ated environments. To generate the canonical plan library for
SET-PR, we created random initial states and ran the planner
for different goals to generate the corresponding state–action
sequences. In Rovers, the goals were to collect soil or rock,
whereas in Childsnack the goals were to make a gluten or
gluten-free sandwich.

After we generated the plan library in this manner, a sim-
ilar strategy was used to generate test cases, except that the
test cases contained goal changes that our system needed to
detect. For each test case, the agent starts with an initial goal
and then changes its goal during execution (with the timing
of the goal change varying among test cases). Overall, we
used this process to generate 100 different test cases per do-
main. In our experiments, we labeled our results based on
the order of the goal change. Namely, a‘0’ denotes a goal
change from rock to soil (Rovers) or gluten to gluten-free
(Childsnack). A ‘1’ denotes a goal change from soil to rock
(Rovers) or gluten-free to gluten (Childsnack).

During each experiment we measured:
1. The percentage of runs the algorithm detects the correct

initial goal
2. The percentage of runs the algorithm detects the correct

final goal
3. The mean distance between the detected goal change and

actual goal change



4. The mean number of actions needed to converge to true
initial goal

5. The mean number of actions needed to converge to true
final goal
In total, we performed experiments in four different con-

ditions for each of the IPC domains. Two of them were win-
dowed, and the others were not. For both windowed and
non-windowed cases, we performed experiments with goal
changes in each direction (i.e., those labeled ’1’ and those
labeled ’0’). The window size was kept constant at five for
all domains.

Experimental Results
In this section, we report results that show strong evidence
for our three hypotheses. Figure 4 provides results from
two sample runs in the ASM domain. In both cases, the
goal changes happen relatively close to each other at third,
seventh, and ninth actions for the first one, and at third,
fourth, and sixth actions for the second one. These cases de-
scribe two team members reacting to an unanticipated en-
emy sniper while they are investigating a route. Initially, the
members think they have eliminated the threat after having
engaged the enemy, and resume investigating the route. But
they quickly realize that they were wrong after the sniper
starts firing on them again. As shown in the graphs, the win-
dowed SET-PR reacts to the goal changes fairly well when
compared to the non-windowed SET-PR (not shown) that
effectively saturates and does not provide useful results. But
sometimes the former does not react fast enough because
there still is too much evidence for the old plan in the win-
dow. We believe that the optimal window size is scenario-
dependent and it is related to the minimum distance between
goal changes.

Tables 1 and 2 summarize the Rovers and Childsnack re-
sults. Overall, the windowed SET-PR shows superior per-
formance in detecting the goal change compared to the non-
windowed counterpart, as evidenced by the percentages of
correct detection for the final goals (92% vs. 12% for Rovers
and 100% vs. 11% for Childsnack). This, along with the
results from the ASM domain, proves the first hypothesis,
H1, that windowing approach improves the goal recogni-
tion performance in dynamic environments with one or more
goal changes. Interestingly, in the Rovers domain, both win-
dowed and non-windowed systems do a poor job detecting

Table 1: Performance over all runs in Rovers domain.
Windowed Rovers1

Percent Correct Initial Goal Detected 13.86

Percent Correct Final Goal Detected 92.08

Mean Dist. Btn. Detected & Actual Goal Change 21.85

Mean Actions to Converge To True Initial Goal 7.07

Mean Actions to Converge To True Final Goal 1.04

Not Windowed Rovers1

Percent Correct Initial Goal Detected 17.82

Percent Correct Final Goal Detected 11.88

Mean Dist. Btn. Detected & Actual Goal Change 21.73

Mean Actions to Converge To True Initial Goal 7.24

Mean Actions to Converge To True Final Goal 3.34

Figure 4: Windowed goal recognition performance for the
ASM domain. For each point on the horizontal axis, the plan
with the lowest plan distance is what SET-PR estimates to be
the current plan.

the initial goals at the beginning of the plan execution. This
is largely a result of how closely related the two plans are in
this domain (soil and rock). The only distinguishing action
between these plans is whether a soil or rock sample is taken.
All the movement and collection actions are shared across
both plans. So, in the beginning, it is difficult to distinguish
the true plan of the agent. Also, this delay in detecting the
true goal is responsible for high average distances between
the detected and actual goal changes. SET-PR often detects
a goal change at this stage, but this is one to correct its initial
error, not a true goal change. This highlights the fact that the
performance of the windowed system is still highly reliant
on that of the underlying goal recognition algorithm. But,
since the approach is algorithm-agnostic, a new algorithm
can be used as necessary.

Table 2: Performance over all runs in Childsnack domain.
Windowed Childsnack0

Percent Correct Initial Goal Detected 100.0

Percent Correct Final Goal Detected 100.0

Mean Dist. Btn. Detected & Actual Goal Change 0.89

Mean Actions to Converge To True Initial Goal 1.0

Mean Actions to Converge To True Final Goal 1.0

Not Windowed Childsnack0

Percent Correct Initial Goal Detected 100.0

Percent Correct Final Goal Detected 10.89

Mean Dist. Btn. Detected & Actual Goal Change 10.89

Mean Actions to Converge To True Initial Goal 9.32

Mean Actions to Converge To True Final Goal 18.81



Table 3: Windowed performance in the Rovers domain, par-
titioned by when the goal change occurred.
Goal Change Percent Range: [0, 30]

Percent Correct Initial Goal Detected 35.48

Percent Correct Final Goal Detected 100.00

Mean Dist. Btn. Detected & Actual Goal Change 3.77

Mean Actions to Converge To True Initial Goal 2.61

Mean Actions to Converge To True Final Goal 1.0

Goal Change Percent Range: [30, 60]

Percent Correct Initial Goal Detected 6.67

Percent Correct Final Goal Detected 100.00

Mean Dist. Btn. Detected & Actual Goal Change 19.57

Mean Actions to Converge To True Initial Goal 7.53

Mean Actions to Converge To True Final Goal 1.0

Goal Change Percent Range: [60, 100]

Percent Correct Initial Goal Detected 2.50

Percent Correct Final Goal Detected 80.0

Mean Dist. Btn. Detected & Actual Goal Change 37.58

Mean Actions to Converge To True Initial Goal 10.18

Mean Actions to Converge To True Final Goal 1.10

As shown in Tables 3 and 4, where we partitioned the
windowed case results based on when the goal change oc-
curs (i.e., in the first 30% of actions, after the first 30% but
before 60% of actions, or after 60% of actions), the perfor-
mance of the windowed goal recognition was not affected
by the timing of the goal change. For the reasons described
earlier, the system might (in the Roverst domain) or might
not (in the Childsnack domain) detect the initial goals cor-
rectly in the beginning of the sequences. But nonetheless,
the system recovers from its erroneous judgment and cor-
rectly detects when a goal change happens. Moreover, the
windowed system is not affected by the lengths of the plans
showing that it scales nicely as we hypothesized in H2.

The plots shown in Figure 5 look to demonstrate what
is occurring in SET-PR at several sample goal change loca-
tions (i.e., what percent of actions are observed before a goal
change). The plots show the average distance to the most
similar plan in the plan library of each type. For the win-
dowed case (on the left column), there is a clear switch after
the goal change such that the plan that was originally most
similar is now less similar than the new goal. However, non-
windowed SET-PR (on the right column) does not have such
a clear differentiation and often never determines the new
goal correctly. The results further validate our first hypoth-
esis, showing that applying the windowing strategy to the
SET-PR algorithm allows it to quickly detect goal changes.

In the Childsnack domain, plans are more distinguishable
since it begins by making the sandwiches early in the plan
(i.e., the more distinguishable actions). Furthermore, there
are fewer generic movement commands taking a significant
portion of the action sequence. Non-windowed SET-PR in-
correctly detects goals changes much earlier than they ac-
tually occur. Similarly, it must observe significantly more
actions before converging to the correct initial or final goal.
These results provide some evidence that highlight the rigid-
ity of the non-windowed approach. Although it detects the
initial goal reasonably well in some instances (i.e., compa-
rable performance to the windowed approach), it performs

Table 4: Windowed performance in the Childsnack domain,
partitioned by when the goal change occurred.

Goal Change Percent Range: [0, 30]

Percent Correct Initial Goal Detected 100.0

Percent Correct Final Goal Detected 100.0

Mean Dist. Btn. Detected & Actual Goal Change 0.65

Mean Actions to Converge To True Initial Goal 1.0

Mean Actions to Converge To True Final Goal 1.0

Goal Change Percent Range: [30, 60]

Percent Correct Initial Goal Detected 100.0

Percent Correct Final Goal Detected 100.0

Mean Dist. Btn. Detected & Actual Goal Change 1

Mean Actions to Converge To True Initial Goal 1

Mean Actions to Converge To True Final Goal 1

Goal Change Percent Range: [60, 100]

Percent Correct Initial Goal Detected 100.0

Percent Correct Final Goal Detected 100.0

Mean Dist. Btn. Detected & Actual Goal Change 1

Mean Actions to Converge To True Initial Goal 1

Mean Actions to Converge To True Final Goal 1

significantly worse than our windowed approach at detect-
ing goal changes.

Looking more closely at the Rovers domain results in Fig-
ure 5, windowed SET-PR has a standard deviation that re-
mains almost constant at a (mostly) higher-level than the
non-windowed case. This is because the windowed system
gains increased flexibility by using smaller subset of state–
action sequence, which allows it to react to dynamic envi-
ronments. But, it could also mean that the system makes
more errors in goal recognition by being too quick to la-
bel a goal change. This is why the window size needs to be
carefully set at a reasonable level, avoiding mistakes in plan
recognition that can happen where the error bars overlap like
in Figure 5a.

Note that the recognition of goal changes in the non-
windowed cases is significantly slower and it is often unable
to detect a goal change occurred. For example, take the non-
windowed SET-PR performance in Figure 5b. The true goal
change occurs at 20% of the way through the plan. SET-
PR does not recognize this until 35 to 40% of the plan has
already been executed. After passing that point, the plans
begin to revert back to their original distances, resulting in
SET-PR never consistently selecting the correct goal. The
reason for the delayed reaction time is because of the history
of past actions that is used during goal recognition. Also, re-
call that the observed actions are represented in an ASG.
Although some ordering information is retained, as the sys-
tem observes more actions, it will contain information for
both types of plans. Thus, the observed ASG will have many
nodes and edges that match many different plans. As a result,
a goal change may not add enough information for detection.

Combining all the results we have covered so far, we
found that the windowing approach works across all these
domains, proving our third and final hypothesis. Hence, we
demonstrated that our novel approach satisfies all three hy-
potheses presented. In the next section, we place our work
within the larger body of scientific knowledge on goal recog-
nition for discussions.



(a) Windowed SET-PR performance
(b) Non-windowed SET-PR performance

Figure 5: Goal recognition performance for Childsnack and Rover domains. Note that the standard use of SET-PR gives no
useful information regarding the goal change, while the windowed case shows precise tracking of goal changes.

Related Work

Prior work on goal recognition (Kautz and Allen 1986;
Baker, Saxe, and Tenenbaum 2009; Sukthankar et al. 2014;
Borck et al. 2015) explored a variety of techniques. How-
ever, most focused on recognizing a single, static goal.

Baker et al. (2009) investigate goal recognition in the con-
text of changing goals. Similar to our research, they proceed
from the principle of rationality and assume that agents plan
approximately rationally to achieve their goals. They repre-
sent this with a Bayesian network model which states that
an agent’s actions are determined by its goal and the envi-
ronment. To infer an agent’s current goal g, they estimate
the likelihood of the observed actions given prior informa-
tion about g. One of the models that they create accounts
for goal changes; it was particularly effective at identifying
the mental state of the agents. The authors remark about the
need to restrict the number of actions used for detection.

Our work differs in three primary ways. First, their best
performing model could detect only one goal change, while
ours can detect any number of dynamic goal changes. Sec-

ond, our approach is system-agnostic; it can be used with a
large variety of goal recognition algorithms. Finally, we de-
scribe a novel technique that can be integrated with many
existing goal recognition algorithms.

Min et al. (2016) perform goal recognition using a Long
Short-Term Memory, a variant of a recurrent neural net in
an open-world game domain. Because of the lack of explicit
directions in games of this type, they relaxed the assumption
that agents act in somewhat rational ways to achieve their
goals. Often times, humans must explore the space with-
out well-defined goals before directing their actions to more
meaningful objectives. Min et al. report that their method
surpasses state of the art performance in goal recognition.
The network takes for input a sequence of actions. The net-
work predicts the probability that an agent is achieving a
particular goal given the prior belief about the agent’s previ-
ous goal.

In order to train this network this method required a
data set with 77,182 player actions from 893 achieved goal
demonstrations. Each demonstration containing around 86
player actions. Many times the amount of data required to



train learning methods like this deter people from using
them. Case-based reasoning approaches have their own lim-
itations, but they only require a few cases in the case base
to make predictions. New cases are easily incorporated into
the system that improve the quality of goal detections. We
do not claim that our method is superior to Min et al., be-
cause our experiments do not operate in the same domians,
but we do provide evidence that our method is also a first-
class strategy for goal recognition.

Borck et al. (2015) use a case-based approach for
plan/goal recognition to control unmanned air vehicles
(UAVs) in (simulated) beyond-visual-range air combat sce-
narios. The task for these UAVs is to estimate an adversary’s
current policy (i.e., a function that maps states to actions)
using prior information about the adversary’s goal, which is
provided in a mission briefing. Their plan recognizer detects
when its prior information about an adversary is incorrect,
and update its assumptions accordingly. This can increase
the accuracy of policy recognition.

This differs from our work in that Borck et al. assume
that the agent has a single, possibly unknown (or incorrectly
estimated), goal. In contrast, we assume that there will be
multiple (temporally-disjoint) goals that an adversary will
pursue during a mission scenario.

Finally, Keren et al. (2016) present a framework for off-
line recognition of static goals under partial observability. In
this work, the actors are allowed to act optimally, or sub-
optimally. The task is to have an observer infer the actor’s
goal, subject to missing action information The method was
tested in three classic domains, blocksworld, logistics, and
grid navigation.

Future Work

We are particularly interested in improving on the SET-PR
graph matching algorithm and creating abstractions on the
action sequence graphs to yield event sequence graphs. This
would provide a better underlying goal recognition algo-
rithm that operates under our windowing approach. Since
our method uses existing goal recognition algorithms, any
improvements to the algorithms are expected to directly im-
prove the performance of our windowing approach.

Specifically, we wish to evaluate our work on a goal
recognition algorithm that has more robust capabilities for
dealing with plans with generic actions and allows abstract-
ing events from the low-level action information. In the case
of SET-PR, this would potentially reducing the number of
nodes and edges in the graph while still keeping qualitative
and quantitative information about what is being observed.

We also plan to evaluate our windowed approach us-
ing a wider variety of goal recognition algorithms. Our ap-
proach was only evaluated using a single algorithm, but we
plan to demonstrate that our approach is algorithm-agnostic
by replicating our results with other goal recognition algo-
rithms. This will demonstrate that our approach is a simple
and effective way to address dynamic goal changes.

Conclusions
In this paper, we described a novel windowing strategy that
can be applied to an existing goal recognition system. This
approach was designed to detect goal changes faster and
more reliably, and we have demonstrated improved perfor-
mance over the SET-PR algorithm. We have shown that the
windowing approach works in three different domains, Au-
tonomous Squad Member, Rovers, and Childsnack. Specif-
ically, the windowing procedure dramatically improves the
goal change recognition capabilities. Lastly, we placed our
work within the larger context of work in plan/goal recogni-
tion, and presented our future work.

References
Baker, C. L.; Saxe, R.; and Tenenbaum, J. B. 2009. Action
understanding as inverse planning. Cognition 113(3):329–
349.
Borck, H.; Karneeb, J.; Floyd, M. W.; Alford, R.; and Aha,
D. W. 2015. Case-based policy and goal recognition. In
Proceedings of the Twenty-Third International Conference

on Case-Based Reasoning, 30–43. Springer.
Cordella, L. P.; Foggia, P.; Sansone, C.; and Vento, M. 2004.
A (sub) graph isomorphism algorithm for matching large
graphs. IEEE transactions on pattern analysis and machine

intelligence 26(10):1367–1372.
Gillespie, K.; Molineaux, M.; Floyd, M. W.; Vattam, S. S.;
and Aha, D. W. 2015. Goal reasoning for an autonomous
squad member. In Goal Reasonning: Papers from the ACS

Workshop. Georgia Institute of Technology, Institute for
Robotics and Intelligent Machines.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth National Conference on

Artificial Intelligence, 32–38. AAAI Press.
Keren, S.; Gal, A.; and Karpas, E. 2016. Privacy preserving
plans in partially observable environments. In Proceedings

of the Twenty-Fifth International Joint Conference on Artifi-

cial Intelligence, 3170–3176. AAAI Press.
Min, W.; Mott, B.; Rowe, J.; Liu, B.; and Lester, J. 2016.
Player goal recognition in open-world digital games with
long short-term memory networks. In Proceedings of the

Twenty-Fifth International Joint Conference on Artificial In-

telligence, 2590–2596. AAAI Press.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and
Goldman, R. P. 2014. Plan, activity, and intent recognition:

theory and practice. Morgan Kaufmann.
Vattam, S. S.; Aha, D. W.; and Floyd, M. W. 2014. Case-
based plan recognition using action sequence graphs. In Pro-

ceedings of the Twenty-Second International Conference on

Case-Based Reasoning, 495–510. Springer.




