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Abstract 
Player goal recognition in digital games offers the promise of 
enabling games to dynamically customize player experience. 
Goal recognition aims to recognize players’ high-level inten-
tions using a computational model trained on a player behavior 
corpus. A significant challenge is posed by devising reliable 
goal recognition models with a behavior corpus characterized 
by highly idiosyncratic player actions. In this paper, we intro-
duce deep LSTM-based goal recognition models that handle 
the inherent uncertainty stemming from noisy, non-optimal 
player behaviors. Empirical evaluation indicates that deep 
LSTMs outperform competitive baselines including single-
layer LSTMs, n-gram encoded feedforward neural networks, 
and Markov logic networks for a goal recognition corpus col-
lected from an open-world educational game. In addition to 
metric-based goal recognition model evaluation, we investi-
gate a visualization technique to show a dynamic goal recog-
nition model’s performance over the course of a player’s goal-
seeking behavior. Deep LSTMs, which are capable of both se-
quentially and hierarchically extracting salient features of 
player behaviors, show significant promise as a goal recogni-
tion approach for open-world digital games.   

Introduction   
Human intelligence plays a pivotal role in interpersonal be-
haviors, communication, and relationships (Baker, Saxe, and 
Tenenbaum 2009; Sukthankar et al. 2014). Humans reason 
about others’ cognitive and affective states and take actions 
according to the inferred states as well as the context and sit-
uation. A broad range of research has been undertaken to em-
ulate social intelligence using artificial intelligence in the 
context of plan, activity, and intent recognition (PAIR).  

Prior work on PAIR has largely focused on observation se-
quences in which an agent’s actions are directly driven by 
concrete goals held by the agent. Observations may be influ-
enced by several sources of uncertainty, such as noisy sensors 
and actions with stochastic outcomes. For instance, PAIR has 
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been investigated in testbed applications such as home ambi-
ent intelligence (Sadri 2012), cyber security (Geib and Gold-
man 2009), terrorism detection (Jarvis, Lunt, and Myers 
2005), intelligent interface agents (Armentano and Amandi 
2011), and intelligent tutoring systems (Alvarez et al. 2015; 
Lee, Liu, and Popović 2014). 

As an important line of PAIR research, goal recognition in 
digital games has been the subject of growing attention (Ha 
et al. 2011; Kabanza et al. 2013). Player goal recognition is 
the process of dynamically identifying the high-level objec-
tive that a player is attempting to achieve based on observable 
gameplay behaviors and states in the game world. Goal 
recognition offers the potential to dynamically adapt game-
play to player intentions, particular in interactive narrative 
(Riedl and Bulitko, 2013), game balancing (Lopes and Bi-
darra, 2011), procedural content generation (Shaker, To-
gelius, and Nelson 2015), and adaptive pedagogical planning 
in educational games (Ha et al. 2011; Mott, Lee, and Lester 
2006).  

Open-world digital games pose a significant challenge for 
goal recognition (Min et al. 2016a). These games do not ex-
plicitly present a set of goals to achieve, and there are a vast 
number of sub-optimal plans with which players can achieve 
their goals. In situations where players have limited prior ex-
perience with a digital game (e.g., serious games for training 
and education), it may be the case that players explore the 
game world rather than deliberately plan actions in order to 
achieve a specific gameplay objective. It is also possible that 
players will unintentionally achieve goals during exploration, 
suddenly abandon goals, or adopt new goals based upon prior 
events. These characteristics of open-world digital games 
produce highly idiosyncratic action sequences, and the task 
of recognizing players’ goals exhibits significant uncertainty. 
Thus, devising reliable computational models is key to the 
success of goal recognition in these environments. 
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In our previous work (Min et al. 2016a, 2016b), we found 
that single-layer long short-term memory network (LSTM)-
based goal recognition models harnessing distributed action 
representations significantly outperform n-gram encoded 
feedforward neural networks (FFNNs) pre-trained with 
stacked denoising autoencoders and Markov logic networks 
(MLNs), with respect to predictive accuracy, standardized 
convergence point, and n-early convergence rate in bench-
mark datasets. In this work, we further investigate LSTMs by 
extending shallow LSTMs to deep LSTMs that feature deep 
structures both in time and layers. We investigate how the 
depth in layers contributes to goal recognition performance 
on noisy gameplay behaviors, particularly compared to pre-
vious state-of-the-art shallow LSTM models. Model evalua-
tions are performed using GOALIE (Generalized Observable 
Action Learning for Intent Evaluation) (Min et al. 2016b), a 
multidimensional goal recognition evaluation framework. 
Furthermore, we extend GOALIE to include a visualization 
technique as a supplementary tool to illustrate goal recogni-
tion models’ dynamic predictive performance. 

Related Work  
Plan recognition can be formulated as a generalized task of 
goal recognition since plan recognition focuses on inferring 
plans and goals of observed agents (Sukthankar et al. 2014). 
While much previous plan recognition work has utilized a 
hand-crafted plan library (Geib and Goldman 2009), some 
other work has addressed plan recognition by learning a plan 
library in a data-driven approach (Vattam and Aha 2015) or 
inverse planning that removes the need for a plan library 
(Baker et al. 2009; Ramírez and Geffner 2011). However, 
these plan recognition approaches are not readily applicable 
to open-world digital games. For example, unlike the inverse 
planning work (Baker et al. 2009), which assumes a rational 
(or approximately rational) agent, players who have no prior 
experience with a game are likely to carry out exploratory, 
non-optimal actions, especially in early phases of gameplay.  
Goal recognition provides a viable solution for inferring play-
ers’ intentions in open-world games. Previous work on goal 
recognition has shown that sequence or statistical relational 
models can efficiently and accurately recognize goals within 
highly noisy, idiosyncratic sequences of player behaviors 
(Min 2016). 

There is a growing body of goal recognition work on han-
dling noisy observation data due to an agent’s mistakes or 
deceptive intention. Keren and colleagues (2015) extended 
goal recognition design, the task of which focuses on modi-
fying an environment by limiting the set of available actions, 
to maximize the goal recognizer’s early prediction capacity, 
particularly for non-optimal agents that have a budget for di-
verting from an optimal path. There is a notable distinction 
between Keren et al.’s work and ours: (1) our work focuses 

on devising robust goal recognition models with high predic-
tive accuracy and early prediction capacity within a fixed vir-
tual environment, and (2) a bounded nature to the agent’s op-
timality is not strictly observed in our environment, since it 
is possible for a player to inadvertently achieve a goal during 
exploration. Sohrabi et al. (2016) investigated plan recogni-
tion as a process of inverse planning in a domain with unreli-
able observations. Their work specifically focused on either 
extra or partial observations, whereas our environment is 
fully observable but observations are inherently sub-optimal 
for achieving goals, rather than simply having extra actions 
on an optimal sequence.  

Digital games can serve as laboratories for investigating 
computational techniques for goal and plan recognition. Bis-
son et al. (2015) examined recursive neural network-based 
decision models on a real-time strategy game (RTS) corpus. 
Recursive neural networks, which are a family of deep learn-
ing models first proposed for natural language parsing, have 
been investigated to automatically extract features that dis-
criminate between correct and incorrect plan hypotheses and 
predict the plan hypothesis that best explains the observed ac-
tion sequence. Evaluations suggest that the recursive neural 
network-based plan recognition approach outperforms two 
competitive baseline algorithms: a probabilistic plan-library 
based approach and an inverse planning approach. Kabanza 
et al. (2013) presented a heuristic weighted model counting 
algorithm that enables recognition of upper and lower bounds 
of posterior probabilities of goals in a RTS, and Synnaeve 
and Bessière (2011) investigated a probabilistic goal recog-
nition approach in a RTS, in which plans are directly learned 
from game replays via unsupervised learning, while proba-
bilistic decision models handle partial observations from 
agents. 

In parallel to deep learning’s significant advances in com-
puter vision, speech recognition, and natural language pro-
cessing (LeCun, Bengio, and Hinton 2015), deep learning has 
yielded considerable progress in goal and plan recognition 
(Bisson, Larochelle, and Kabanza 2015; Min et al. 2014; Min 
et al. 2016a). Min and colleagues (2014) investigated FFNNs 
pre-trained with stacked denoising autoencoders for goal 
recognition, which significantly outperformed previous state-
of-the-art models based on MLNs. Compared to MLN-based 
approaches, which use a combination of hand-authored logic 
formulae and machine-learned weights, the deep learning ap-
proach eliminates labor-intensive feature engineering efforts 
by utilizing multi-level feature abstraction techniques. In 
more recent work by Min and colleagues (2016a), they ex-
amined goal recognition with single layer LSTMs leveraging 
distributed action representations. The results show that the 
LSTM-based goal recognition approach achieved state-of-
the-art predictive accuracy for an open-world educational 
game goal recognition corpus.  



CRYSTAL ISLAND Educational Game 
 CRYSTAL ISLAND (Figure 1) is a rich, virtual 3D educational 
game implemented using the Source game engine from Valve 
Software. In the game, players learn microbiology concepts, 
aligned with the North Carolina Standard Course of Study for 
eighth-grade microbiology, through an interactive science 
narrative. CRYSTAL ISLAND has been the subject of extensive 
empirical investigation, and has been found to provide sub-
stantial learning and motivational benefits (Rowe et al. 2011), 
while also offering significant challenge with fewer than half 
of players solving the mystery in less than an hour. 

CRYSTAL ISLAND features a science mystery where players 
attempt to discover the identity and source of an infectious 
disease that is plaguing a research team stationed on a remote 
island. Players assume the role of a visiting investigator to the 
island, who is drawn into a mission to save the research team 
from the outbreak. Players interact with CRYSTAL ISLAND 
from a first-person viewpoint, using a diverse set of actions 
occurring in seven major locations of the research camp (Fig-
ure 2). For example, players move around the camp, pick up 
and drop objects, converse with virtual characters, view mi-
crobiology-themed posters and books to learn about infec-
tious agents, take notes, use lab equipment to perform hy-
pothesis testing, and complete a diagnosis worksheet. Players 
record their findings, hypotheses, and a final diagnosis in the 
diagnosis worksheet, and solve the mystery by submitting the 
correct worksheet to the camp nurse. 

All player actions are logged by the CRYSTAL ISLAND 
game and stored for future data analyses. The data to be used 
for creating goal recognition models in this work was col-
lected from a study involving 153 eighth grade students, aged 
12–15 (M=13.3, SD=0.48) in a North Carolina public middle 
school. We removed 16 players from analysis due to incom-
plete data or prior experience with CRYSTAL ISLAND, and thus 
137 players (males: 77, female: 60) are used to evaluate the 
goal recognition framework (Baikadi 2014).  

CRYSTAL ISLAND Goal Recognition Corpus 
The goal recognition work assumes that a given sequence of 
actions maps to a single goal, and no interleaving occurs be-
tween actions associated with different goals. During the data 
collection, we did not directly observe players’ goals as they 
played CRYSTAL ISLAND. Rather, players’ goals were identi-
fied during a post-hoc analysis, in which we labeled all ac-
tions between the previously achieved goal and the current 
goal with the label of the current goal that the player will next 
achieve (Min et al. 2014). 

Under these conditions, goal recognition is cast as a mul-
ticlass classification problem in which a goal recognition 
model predicts the most likely goal associated with the cur-
rently observed sequence of actions after the previously ob-
served goal. The CRYSTAL ISLAND goal recognition corpus 
includes 137 players’ gameplay data that consists of 77,182 
player actions (i.e., the total number of possible goal recog-
nitions) and 893 achieved goals, with an average of 86.4 
player actions per goal. 

A key step that must precede model-training is to encode 
data in a format that machine-learning algorithms can take as 
input (i.e., features) and output (i.e., labels). Player actions 
are encoded with four properties: action type, location, narra-
tive state, and previously achieved goals (Min et al. 2014).  
• Action Type: CRYSTAL ISLAND includes 19 distinct types 
of player actions (e.g., talk, move, pick up). 
• Location: CRYSTAL ISLAND includes 39 fine-grained and 
non-overlapping sub-locations that decompose the seven ma-
jor camp locations (Figure 2). 
• Narrative State: Four milestone narrative events include 
discussing the illness with the nurse, testing the contaminated 
object, submitting a diagnosis to the nurse, and submitting a 
correct diagnosis to the nurse. 
• Previously Achieved Goals: Eight previously achieved 
goals are available, including ‘None’ in case the player has 
not yet achieved any goals. 

Players advance through CRYSTAL ISLAND’s non-linear 
narrative by completing a set of goals, which are not directly 

Figure 1: CRYSTAL ISLAND open-world educational game. 

1.		Outdoors	
2.		Infirmary	
3.		Living	Quarters	
4.		Waterfall	

5.		Lead	Scientist’s	Quarters	
6.		Dining	Hall	
7.		Laboratory	

Figure 2: Map of the CRYSTAL ISLAND research camp. 



presented to the players. In this work, seven goals are consid-
ered (Table 1). Each goal represents a key high-level objec-
tive collectively required to solve the final mystery of the 
game. Descriptive statistics of the distribution of the seven 
goals are shown in Table 1, which is based on the number of 
required actions required to achieve a goal. The majority 
class-based accuracy rate is 26.6%.  

Once a goal is achieved, any future occurrence of the goal-
achieving action is considered a normal action rather than a 
goal because players already know how to achieve the goal 
and might have performed the action as a step to achieve a 
new goal.  

Goal Distribution 
Running lab test on contaminated food 26.6% 

Submitting a diagnosis 17.1% 
Speaking with the camp’s cook 15.2% 

Speaking with the camp’s bacteria expert 12.5% 
Speaking with the camp’s virus expert 11.2% 

Speaking with a sick patient 11.0% 
Speaking with the camp nurse 6.4% 

Table 1: CRYSTAL ISLAND: Distributions of goals. 

Goal Recognition in CRYSTAL ISLAND 
Due to the exploratory nature of player behavior in open-
world digital games, goal recognition models should robustly 
handle cyclical relationships between player goals and ac-
tions (Ha et al. 2011; Min et al. 2016a). Players’ previously 
achieved goals may inform their subsequent actions, and their 
current actions may influence their upcoming goals.  

These characteristics of open-world digital games have in-
spired the investigation of a set of machine learning tech-
niques for goal recognition. Ha and colleagues (2011) inves-
tigated Markov logic networks that are well suited for ma-
chine learning tasks in domains with complex associations 
between modeled entities such as actions and goals in goal 
recognition. Min et al. (2014) examined n-gram encoded 
feedforward neural networks, where previous actions and 
previously achieved goals are encoded in the feature set and 
are jointly utilized to predict the player’s current goal.  

In contrast to these two methods that formulate the sequen-
tial and cyclical relationships between actions and goals us-
ing a fixed length of inputs and outputs, sequence labeling 
techniques can take variable length inputs without constrain-
ing them to a fixed size. This flexible modeling capacity pro-
vided by sequence labeling techniques is well suited for cap-
turing sequential, complex patterns across players’ previous 
behavior, achieved goals, and current goal. This advantage 
has motivated the investigation of goal recognition models 
(Min et al. 2016a) based on long short-term memory net-
works (LSTMs) (Hochreiter and Schmidhuber 1997). In this 

work, we investigate deep LSTMs featuring stacked LSTM 
layers.  

LSTM Background 
LSTMs are a variant of recurrent neural networks (RNNs) 
that are specifically designed for sequence labeling of tem-
poral data. LSTMs have achieved high predictive perfor-
mance in various sequence labeling tasks, often outperform-
ing standard recurrent neural networks by leveraging a 
longer-term memory than standard RNNs and effectively ad-
dressing the vanishing gradient problem (LeCun, Bengio, and 
Hinton 2015).  

LSTMs feature a sequence of memory blocks that include 
one or more self-connected memory cells (ct) along with 
three gating units: an input gate (it), a forget gate (ft), and an 
output gate (ot). In LSTMs, the input and output gates modu-
late the incoming signals (!", the candidate value for the 
memory cell state) and outgoing signals (ct) to the memory 
cell, respectively, and the forget gate controls whether the 
previous state of the memory cell (ct-1) is remembered or for-
gotten, where t denotes a time step.  

Deep LSTMs (Figure 3A) extend shallow LSTMs by 
stacking multiple layers of LSTMs on top of each other 
(Graves, Mohamed, and Hinton 2013). Compared to the shal-
low LSTMs, deep LSTMs capture multi-level hierarchical 
representations within a time step, while preserving long term 
dependencies in the input sequence across time. The memory 
cell output (ℎ"$%&) in the layer n-1 at time t is fed as input to 
the LSTM in the upper layer n at time t, while the lowest 
LSTM layer takes as input the original input sequence (x) as 
in shallow LSTMs, as illustrated in Figure 3A. Equations (1–
6) present how deep LSTMs operate in the nth layer at time 
t. As noted, in deep LSTMs, the W matrices transform the 
output in the layer below (ℎ"$%&), and, only for the lowest 
LSTM layer (in case of n=1), ℎ"' corresponds to (", which is 
the original input at time t. 

)"$ = +(-.
$ℎ"$%& + 0.$ℎ"%&$ + 1.$)     (1) 

3"$ = +(-4
$ℎ"$%& + 04$ℎ"%&$ + 14$)      (2) 

!"$ = 567ℎ(-8$ℎ"$%& + 08$ℎ"%&$ + 18$)      (3) 
!"$ = )"$!"$ + 3"$!"%&$                           (4)	

:"$ = +(-;$ℎ"$%& + 0;$ℎ"%&$ + 1;$)		 					     (5)	
ℎ"$ = :"$	567ℎ(!"$)															 	 	 	 		(6) 

Deep LSTMs have been successfully examined in acoustic 
modeling such as speech recognition (Graves, Mohamed, and 
Hinton 2013). The enhanced expressiveness allowed by mul-
tiple layers in the LSTM network structure, along with the 
successful demonstration of shallow LSTM models for goal 
recognition (Min et al. 2016a), inspires our work to investi-
gate deep LSTMs, which is expected to extract complex, se-
quential, hierarchical patterns underlying noisy gameplay be-
haviors in the process of achieving goals. 



Deep LSTM-Based Goal Recognition 
To represent an action input in deep LSTMs, we follow the 
distributed action representation approach introduced in (Min 
et al. 2016a). Distributed vector representations were initially 
investigated on textual data for language modeling (Bengio 
et al. 2003). Distributed representations of words have been 
successfully examined in a wide range of natural language 
processing tasks, such as language parsing (Socher, Manning, 
and Ng 2010) and sentiment analysis (Le and Mikolov 2014). 
Distributed action representation-based LSTMs were also 
shown to outperform discrete action representation-based 
LSTMs for goal recognition, with respect to predictive accu-
racy, standardized convergence point, and N-early conver-
gence rate (Min 2016). 

In order to train distributed action embeddings, we utilize 
a 10-dimensional discrete vector as input for the deep LSTM 
(Figure 3B). The first three dimensions of the vector are allo-
cated to represent the action type, action location, and current 
narrative state with integer-based indices, while the following 
seven dimensions represent a sequence of previously 
achieved goals (seven goals in total in CRYSTAL ISLAND) also 
with integer-based indices. 

Distributed action embeddings are managed in an action-
property embedding matrix that is randomly initialized fol-
lowing a uniform distribution (max: 0.05, min: -0.05) and is 
fine-tuned using supervised machine learning. Since an ac-
tion consists of multiple properties (e.g., type, location, nar-
rative state), distributed action representations are managed 
on a per-property basis. To operationalize this, a comprehen-
sive action-property embedding matrix, the size of which is 

Figure 3: (A) Deep LSTMs (Graves, Mohamed, and Hinton 2013) with two LSTM layers for goal recognition. The cell output vector, ℎ"<, 
at the last time step (t) in the highest layer (2) is utilized to predict the goal associated with xt using a softmax layer. (B) A distributed action 
representation (xt) generated from a discrete action representation (inputt) (Min et al. 2016a). An action-property embedding matrix linearly 
maps each action property (i.e., action type, action location, narrative state, previously achieved goals) in a discrete vector space onto a 
continuous vector space, and all N+3 continuous vectors are concatenated to generate a single distributed action representation, xt (N=7 in 
this work). The induced xt is fed into the LSTM memory block at time t. 



74 (the total number of possible values of action properties 
computed as 19+39+8+8) by d (embedding size), is created. 
As the action-property embedding matrix operates as a linear 
transformation, the entire network is end-to-end trainable us-
ing a backpropagation method via supervised learning. 

Each action in the sequence is encoded with a single dis-
tributed representation by concatenating the ten action prop-
erty-based representations that constitute the action. The pro-
cess for creating this distributed action representation is 
shown in the top layer in Figure 3B. As each action property 
has a d-dimensional continuous vector space, the size of a 
concatenated distributed action embedding to represent an 
action, xt, is (10 x d).  

At recognition time, a sequence of actions is sequentially 
fed into the LSTM model in the recurrent neural network for-
malism. The final memory cell output vector (e.g., ℎ"< in Fig-
ure 3A) is used to predict the most likely goal for the se-
quence of actions in a softmax layer, which is interpreted as 
a calculation of posterior probabilities of goals. 

Evaluation 
We evaluate goal recognition models’ performance on the 
CRYSTAL ISLAND data corpus using the GOALIE framework. 
GOALIE (Min et al. 2016b) is a multidimensional evaluation 
framework for player goal recognition, equipped with a set of 
metrics that measure goal recognition models’ performance 
from various perspectives, such as predictive accuracy and 
early prediction capacity. Among evaluation metrics, Min et 
al. (2016b) pointed out that the conventional convergence 
point metric can be misleading in representing models’ early 
prediction capacity, since the metric ignores non-converged 
action sequences, in which the goal prediction on the last ac-
tion is incorrect. To address this challenge, Min et al. sug-
gested the standardized convergence point metric that takes 
into consideration all action sequences penalizing non-con-
verged sequences (2016b). Thus, we report the goal recogni-
tion performance in terms of the accuracy rate, N-early con-
vergence rate, and standardized convergence point. The N-
early convergence rate measures the percentage of action se-
quences in which the last (N+1) goal predictions are correct. 
Standardized convergence point measures how quickly a goal 
recognition model can consistently produce accurate predic-
tions. Lower is better for the standardized convergence point, 
while, for all other metrics, higher is better.  

We evaluate four computational goal recognition ap-
proaches: Markov logic networks (MLN) (Baikadi 2014), n-
gram encoded feedforward neural networks pre-trained using 
stacked denoising autoencoders (FFNN) (Min et al. 2014), 
shallow LSTMs with one single LSTM layer (LSTM-1) (Min 
et al. 2016a), and deep LSTMs with N stacked LSTM layers 
(LSTM-N), in which N is greater than one. The four compu-

tational approaches are evaluated using 10-fold cross-valida-
tion, where we use the same player-level data split for fair 
comparisons across the approaches. 

For FFNN, LSTM-1, and LSTM-N, a configuration of 
model hyperparameters is identified using an automated grid 
search, and only the best performing model with respect to 
cross-validation accuracy rate is reported. MLNs, on the 
other hand, utilized human expert-crafted logic formulae in 
terms of discovery events, domain-specific representations of 
user progress specifically targeted to the digital game 
(Baikadi 2014). For LSTM-N, we explore two hyperparame-
ters: N among {2, 3} and the number of hidden units among 
{25, 50, 100}, which are consistently used for all LSTM lay-
ers. For other hyperparameters, we set the dropout rate (Sri-
vastava et al. 2014) and action embedding size to 0.75 and 
20, respectively. Further, we use a softmax layer for classify-
ing given sequences of actions, adopt a mini-batch gradient 
descent with the mini-batch size of 128, and utilize categori-
cal cross entropy for the loss function and the Adam stochas-
tic optimizer (Kingma and Ba 2014). For training efficiency, 
action sequences greater than ten are pruned to keep only the 
last ten actions. Finally, the training process stops early if the 
validation score has not improved within the last seven 
epochs. In this work, 10% of the training data is used to de-
termine early stopping, while 90% is utilized for supervised 
training. The maximum number of epochs is set to 100.  

 MLN FFNN LSTM-1 LSTM-2 
Accuracy Rate (%) 55.21 62.43 66.35 67.68 

Stand. Convergence point (%) 67.66 62.66 53.19 48.69 
0E-Convergence Rate (%) 49.09 70.06 71.32 72.91 
1E-Convergence Rate (%) 46.71 64.93 68.81 71.90 

Table 2: Averaged rates of MLN, FFNN, LSTM with a single layer 
(LSTM-1), and LSTM with two layers (LSTM-2). NE-Convergence 
Rate denotes N-early convergence rate. 

Table 2 presents results of the four computational goal 
recognition approaches. For deep LSTMs, LSTM-2 featuring 
two stacked LSTM layers each with 25 hidden units achieves 
the highest accuracy rate (67.68%) outperforming the best 
performing LSTM-3 networks (66.26%) also with 25 hidden 
units. LSTM-2 not only achieves the highest accuracy rate 
(i.e., greatest predictive performance), but also achieves the 
highest 0- and 1-early convergence rate and the lowest stand-
ardized convergence point, which together suggests that deep 
LSTMs are state-of-the-art for goal recognition in CRYSTAL 
ISLAND, as measured by the GOALIE evaluation framework.  

We further investigate the performance of goal recognizers 
in CRYSTAL ISLAND using a visualization tool, which illus-
trates goal recognition models’ dynamic performance over 
time. To achieve this, we extend the scope of the current 



GOALIE framework to include a graphical illustration in ad-
dition to its set of descriptive metrics.  

The x-axis in Figure 4 denotes player progress in an action 
sequence, and the y-axis indicates the accuracy rate as the 
player progresses in the action sequence to achieving the 
goal. For example, suppose a player performs three actions 
A1, A2, and A3 to achieve a goal, G1, and a goal recognition 
model dynamically predicts the player’s goal three times for 
each observed action, such as G1 (correct) for A1, G2 (incor-
rect) for A1 and A2, and G1 (correct) for A1, A2, and A3. First, 
to visualize the dynamically changing performance of a goal 
recognition model, we create 11 bins (0–5%, 5–15%, 15–
25%, …, 85–95%, 95–100%) to represent a player’s progress 
in an action sequence. Except for the first and last bin, each 
bin has a range of 10%, while the first and last bins have a 
5% range. These bins serve as the x-axis. Returning to the 
example, since the goal recognition model correctly predicts 
the goal for the first action (100% accuracy rate for progress 
of 33.3% toward the goal), we fill the first bin (0–5%) to the 
fourth bin (25–35%) with 100%. Then, for the second goal 
prediction, the accuracy rate is 0% as it predicts the goal 
wrong, when the current progress toward the goal is 66.7%. 
To add this information, we fill the fifth bins (35–45%) to the 
eighth bins (65–75%) with 0%. Finally, for the last action’s 
goal prediction, we fill the ninth (75–85%) to eleventh bins 
(95–100%) with 100%, as the goal recognition model recog-
nizes the correct goal. This process is repeated for all action 
sequences in the test sets (ten different test sets in 10-fold 
cross-validation), and all scores in each bin are averaged to 
have a single value. Note that the size of bins is not restricted 
to 11, but we use this value for an illustration. 

It is not surprising that all the graphs have an increasing 
pattern in general, as goal recognizers can predict the player 
goals more accurately when presented more observed evi-
dence. However, it is interesting to see that there is a peak 
around 20% of the progress for LSTM-2, LSTM-1 and MLN, 
after which the predictive accuracy continuously decreases 

until about 40%. Even though this pattern has not been rigor-
ously scrutinized, we speculate that the large outdoor region 
that players pass through to achieve a goal situated in another 
building results in some confusion for the goal recognition 
models, while even the initial set of actions (before 20% of 
the progress) taken for achieving a goal provides stronger ex-
planations (e.g., the player is more likely to achieve a proxi-
mal goal from the location where the last goal was achieved) 
for the models. The deep LSTM (LSTM-2) appears to per-
form better in dealing with these noisy interactions, consist-
ently outperforming the shallow LSTM (LSTM-1) after the 
initial set of actions. For all the goal recognition approaches, 
the accuracy rate is highest at the end of the action sequences, 
which demonstrates the goal recognition models can more ac-
curately model noisy player behaviors as the behavioral cues 
get more directly related to the current goal.  

Conclusion 
Player goal recognition is a core plan, activity, and intent 
recognition task for open-world digital games. We have in-
troduced deep LSTM-based goal recognition models for an 
educational game corpus characterized by non-optimal player 
behaviors. Empirical evaluations with the GOALIE frame-
work indicate that deep LSTMs with two stacked LSTM lay-
ers achieve the most reliable results across accuracy rate, 
standardized convergence point, and N-early convergence 
rate metrics. We additionally present a visualization tech-
nique as a supplementary tool for GOALIE. This graphical 
representation illustrates how goal recognition models dy-
namically operate, as players progress toward achieving var-
ious goals in the game.  

In the future, it will be important to investigate other forms 
of recurrent neural networks along with different optimiza-
tion and regularization techniques in order to identify better 
models. Also, there exist a broad range of opportunities to 
enhance the GOALIE evaluation framework by incorporating 
additional metrics and graphs that represent currently un-
measured aspects of goal recognition models’ performance. 
With regard to the current visualization work, it will be inter-
esting to understand players’ behaviors along with predicted 
goals, and systematically examine patterns found in the 
graph. The graph introduced in this work aggregates all goal 
recognition results regardless of the goals, thereby providing 
a single graph. Generating a graph per goal can provide a 
more fine-grained analysis by illustrating how models oper-
ate differently based on goals. Moreover, it will be interesting 
to investigate how to illustrate dynamic goal recognition per-
formance in terms of the scenario completion rather than the 
action sequence. For goal recognition in educational games, 
it will be important to investigate the relationships between 
the players’ goals and learning outcomes. Finally, it will be 
important to investigate how goal recognition models operate 

Figure 4: Average goal recognition accuracy over the course of 
the observation sequence.  



at run-time to most effectively drive gameplay personaliza-
tion in player-adaptive games. 
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