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Abstract

When acting, agents may deviate from the optimal plan, ei-
ther because they are not perfect optimizers or because they
interleave multiple unrelated tasks. In this paper, we detect
such deviations by analyzing a set of observations and a
monitored goal to determine if an observed agent’s actions
contribute towards achieving the goal. We address this prob-
lem without pre-defined static plan libraries, and instead use
a planning domain definition to represent the problem and
the expected agent behavior. At the core of our approach,
we exploit domain-independent heuristics for estimating the
goal distance, incorporating the concept of landmarks (ac-
tions which all plans must undertake if they are to achieve
the goal). We evaluate the resulting approach empirically us-
ing several known planning domains, and demonstrate that
our approach effectively detects such deviations.

1 Introduction
People are not perfect optimizers and routinely execute sub-
optimal plans. Even when aware of the expected optimal
plan, they deviate from it for a variety of reasons, ranging
from being interrupted by an emergency that needs their
immediate attention to simply getting their attention drawn
to something else. Consequently, the ability to detect when
someone deviates from an expected optimal plan can be use-
ful, allowing for example, to help a person stay focused on
a particular goal, or detecting when a person is distracted
while performing routine activities. For artificial agents, de-
tecting sub-optimal plan steps is also useful in domains such
as plan recognition, where it enables the detection of con-
current plan execution and plan interleaving.

While previous approaches rely on a complex logical for-
malism (Fritz and McIlraith 2007) to evaluate optimality,
we present a technique which exploits domain independent
heuristics and planning landmarks, both of which utilize
planning domain descriptions to monitor plan optimality.
Our technique functions in two stages. In the first stage, we
perform landmark extraction (Hoffmann, Porteous, and Se-
bastia 2004) (landmarks are properties or actions that cannot
be avoided to achieve a goal along all valid plans). In the
second stage, we perform behavior analysis by using two
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methods that can work independently or together to mon-
itor plan optimality. The first method takes as input the re-
sult of an observed action for estimating the distance1 (using
any domain-independent heuristic) to the monitored goal,
and thus, it analyzes possible deviations over earlier obser-
vations in a plan’s execution. The second method aims to
predict which actions may possibly contribute towards goal
achievement (i.e., reduce the distance to the goal) in the next
observation, and does so by analyzing the closest (estimated
distance) landmarks of the current monitored goal. By con-
sidering the distance to the monitored goal and identifying
actions which do not reduce this distance, we can thus iden-
tify which actions do not contribute to goal achievement.

Apart from a formalization of the optimality detection
problem, our main contribution is a set of algorithms that use
planning techniques (landmarks and domain-independent
heuristics) to perform plan optimality monitoring. Experi-
ments over several planning domains show that our approach
yields high accuracy at low computational cost to detect
non-optimal actions (i.e., which actions do not contribute to
achieve a monitored goal) by analyzing both optimal and
sub-optimal execution of agent plans.

This paper is structured as follows. In Section 2, we
set the context for the paper, describing planning, domain-
independent heuristics, plan optimality monitoring problem,
and landmarks. Section 3 describes our approach for moni-
toring plan optimality, and Section 4 evaluates our approach.
In Section 5, we survey the literature on approaches that
monitor plan execution, such as goal/plan recognition, goal/-
plan abandonment detection, and optimality monitoring. Fi-
nally, Section 6 concludes this paper by discussing limita-
tions and future directions.

2 Background
2.1 Planning
Planning is the problem of finding a sequence of actions (i.e.,
a plan) that achieves a particular goal from an initial state.
We adopt the terminology of Ghallab et al. (Ghallab, Nau,
and Traverso 2004) to represent planning domains and in-
stances (also called planning problems) in Definitions 1–5.

1In the sense of the amount of effort (e.g., actions) needed to
achieve the goal.
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Definition 1 (Predicates and State). A predicate is denoted
by an n-ary predicate symbol p applied to a sequence of zero
or more terms (⌧1, ⌧2, ..., ⌧n) – terms are either constants or
variables. A state is a finite set of grounded predicates (facts)
that represent logical values according to some interpreta-
tion. Facts are divided into two types: positive and negated
facts, as well as constants for truth (>) and falsehood (?).

Definition 2 (Operators and Actions). An operator a is
represented by a triple hname(a), pre(a), eff(a)i: name(a)
represents the description or signature of a; pre(a) describes
the preconditions of a — the set of predicates that must ex-
ist in the current state for a to be executed; eff(a) represents
the effects of a which modify the current state. Effects are
split into eff(a)+ (i.e., an add-list of positive predicates) and
eff(a)� (i.e., a delete-list of negated predicates). An action is
a grounded operator instantiated over its free variables.

Definition 3 (Planning Domain). A planning domain defi-
nition ⌅ is a pair h⌃,Ai, consisting of a finite set of facts ⌃
and a finite set of actions A.

Definition 4 (Planning Instance). A planning instance ⇧ is
encoded by a triple h⌅, I, Gi, in which ⌅ = h⌃,Ai is the
domain definition; I ✓ ⌃ is the initial state specification,
which is defined by specifying the value for all facts in the
initial state; and G ✓ ⌃ is the goal state specification, which
represents a desired subset of facts to be achieved.

Finally, a plan is the solution to a planning problem.
Definition 5 (Plan). Let ⇧ = hh⌃,Ai, I, Gi be a plan-
ning instance. A plan ⇡ for ⇧ is a sequence of actions
[a1, a2, ..., an] (where ai 2 A) that modifies the initial state
I into one in which the goal state G holds by the successive
(ordered) execution of actions in a plan ⇡.

2.2 Domain-Independent Heuristics
Heuristics are used to estimate the cost to achieve a spe-
cific goal (Ghallab, Nau, and Traverso 2004). In classical
planning, this estimate is closely related to the number of
actions to achieve the goal state from a particular state. In
this work, as done in classical planning, we consider that the
action cost is c(a) = 1 for all a 2 A. Thus, the cost for a
plan ⇡ = [a1, a2, ..., an] is c(⇡) = ⌃c(ai) = n. In general,
the use of heuristics can substantially reduce search time by
estimating how many actions are needed to achieve a partic-
ular goal. When a heuristic never overestimates the cost to
achieve a goal, it is called admissible and guarantees opti-
mal plans when used with for certain planning algorithms.
An heuristic h(s) is admissible if h(s)  h*(s) for all states,
where h*(s) is the optimal cost to the goal from state s, oth-
erwise it is called inadmissible. In this work, we use both
admissible and inadmissible domain-independent heuristics
for estimating the distance to a monitored goal.

2.3 Plan Optimality Monitoring Problem
We define plan optimality monitoring as the process of mon-
itoring the execution of a plan by an agent to solve a plan-
ning instance (Definition 4) and detecting when the agent
executes steps that deviate from any one of the optimal plans
(Definition 6), and instead executes other actions.

Definition 6 (Optimal Plan). Let ⇡ = [a1, ...an] be a plan
with length |⇡| = n for an instance ⇧, we say ⇡ is optimal,
also represented as ⇡⇤ if there exists no other plan ⇡< such
that |⇡<| < |⇡⇤|. A planning instance may have multiple
optimal plans.

Intuitively, given a planning instance, we aim to detect ex-
actly which actions during a plan execution do not contribute
towards a monitored goal of a planning instance. Formally,
we define the task of plan optimality monitoring in Defini-
tion 7 and note that in this paper we consider that all actions
are observed during a plan execution.
Definition 7 (Plan Optimality Monitoring Problem). A
plan optimality monitoring problem is a tuple T⇡⇤ =
h⌅, G,Oi, in which ⌅ = h⌃,Ai is a planning domain defi-
nition, ⌃ consists of a finite set of facts and A a finite set of
actions; I as the initial state; G is the monitored goal; and
O = ho1, o2, ..., oni is an observation sequence of the plan
execution with each observation oi 2 O being an action in
the set of actions A in domain definition ⌅.

In order to define the solution to a plan optimality moni-
toring problem, we must define some auxiliary concepts.
Definition 8 (Plan Commitment). Given a set of optimal
plans, an agent is committed to a plan ⇡ if, given a sequence
of observations o1, . . . , om: i) ok 2 ⇡ where (1  k  m);
and ii) if ok = aj , then 8i = 1 . . . j � 1, ai 2 O and ai
occurs before ai+1 in O. An observation op is non-optimal if
the agent is committed to plan ⇡ and: op /2 ⇡; or if op = aj ,
ak has not yet been observed where k < j. The solution
to a plan optimality monitoring problem is then the set of
non-optimal observations.

Intuitively, the solution to a plan optimality monitoring
problem are those observations that do not advance an opti-
mal plan that the agent may be following (is committed to).

As an example of what we aim to detect, consider an in-
stance of the LOGISTICS2 planning problem shown in Fig-
ure 1. This example shows two cities: the city on the left
contains locations A through D, and the city on the right
contains location E. Locations C and E are airports. The
goal within this example is to transport the box at location
B to location E. From this planning problem, Table 1 shows
two possible plan executions one of which is optimal and
the other sub-optimal. In the sub-optimal plan execution,
boxes in gray represent actions that do not contribute to goal
achievement, i.e., sub-optimal actions. Boxes in light-gray
represent actions that must be taken to resume the plan exe-
cution to achieve the goal.

2.4 Landmarks
Planning landmarks are necessary properties (actions) that
must be true (executed) at some point in every valid plan3

to achieve a particular goal. Landmarks are often partially

2The LOGISTICS domain consists of airplanes and trucks trans-
porting packages between locations (e.g., airports and cities).

3A valid plan to achieve a goal is a successive execution of ac-
tions (ordered) that modifies an initial state into a state that contains
the goal state
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Figure 1: LOGISTICS problem example.

Optimal Plan
0 (drive TRUCK D B CITY1)
1 (loadTruck BOX TRUCK B)
2 (drive TRUCK B AIRPORT-C CITY1)
3 (unloadTruck BOX TRUCK AIRPORT-C)
4 (fly PLANE AIRPORT-E AIRPORT-C)
5 (loadAirPlane BOX PLANE AIRPORT-C)
6 (fly PLANE AIRPORT-C AIRPORT-E)
7 (unloadAirplane BOX PLANE AIRPORT-E)

Sub-optimal Plan
0 (drive TRUCK D B CITY1)
1 (loadTruck BOX TRUCK B)
2 (unloadTruck BOX TRUCK B)
3 (drive TRUCK B A CITY1)
4 (drive TRUCK A B CITY1)
5 (loadTruck BOX TRUCK B)
6 (drive TRUCK B AIRPORT-C CITY1)
7 (unloadTruck BOX TRUCK AIRPORT-C)
8 (fly PLANE AIRPORT-E AIRPORT-C)
9 (loadAirPlane BOX PLANE AIRPORT-C)
10 (fly PLANE AIRPORT-C AIRPORT-E)
11 (unloadAirplane BOX PLANE AIRPORT-E)

Table 1: Plan Optimality Monitoring example.

ordered by their pre-requisite dependencies. Hoffman et
al. (2004) define landmarks as follows.
Definition 9 (Fact Landmarks). Given a planning instance
⇧ = h⌅, I, Gi, a formula L is a landmark in ⇧ iff L is true
at some point along all valid plans that achieve G from I.

Hoffmann et al. (2004) introduce two types of land-
marks as formulas: conjunctive and disjunctive landmarks.
A conjunctive landmark is a set of facts that must be true
together at some point in every valid plan to achieve a
goal. A disjunctive landmark is a set of facts in which
one of facts must be true at some point in every valid
plan to achieve a goal. Within LOGISTICS, an exam-
ple conjunctive landmark formula is: (at PLACE-1) ^
(holding BLOCK-A); while a disjunctive landmark exam-
ple is ((at PLACE-1) ^ (holding BLOCK-A)) _ ((at
PLACE-1) ^ (holding BLOCK-B)).

Landmark extraction involves identifying conjunctive and
disjunctive landmarks and the temporal ordering between
them. Consider the LOGISTICS example in Figure 1. List-
ing 1 shows the resulting fact landmarks, while Figure 2

Fact Landmarks:

(and (at BOX AIRPORT-E))

(and (at PLANE AIRPORT-E) (in BOX PLANE))

(and (at PLANE AIRPORT-C) (at BOX AIRPORT-C))

(and (at PLANE AIRPORT-E))

(and (at TRUCK D))

(and (in BOX TRUCK) (at TRUCK AIRPORT-C))

(and (at BOX B) (at TRUCK B))

(or (at TRUCK A) (at TRUCK C) (at TRUCK D))

Listing 1: Fact landmarks (conjunctive and disjunctive) ex-
tracted from the LOGISTICS example.

show their ordering. Note that Figure 2 shows such land-
marks ordered by facts that must be true together, with the
goal at the top of the figure and earlier landmarks below.

at BOX AIRPORT-E

at PLANE AIRPORT-E in BOX PLANE

at BOX B at TRUCK B

at TRUCK A at TRUCK C at TRUCK D

at PLANE AIRPORT-C at BOX AIRPORT-C

at TRUCK D

at PLANE AIRPORT-E in BOX TRUCK at TRUCK AIRPORT-C

Figure 2: Ordered fact landmarks extracted from the LOGIS-
TICS example from Figure 1. Fact landmarks that must be
true together are represented by connected boxes and repre-
sent conjunctive landmarks. Disjunctive landmarks are rep-
resented by octagonal boxes connected by dashed lines.

3 Plan Optimality Monitoring
We now describe a heuristic for optimality monitoring that
uses planning landmarks and domain-independent heuris-
tics. Our approach consists of estimating the distance to the
monitored goal for every observed action and then identi-
fying which actions reduce the distance towards the goal,
labeling actions that fail do so as deviations.

3.1 Analyzing Plan Execution Deviation
To analyze possible plan execution deviation, we compute
the estimated distance to the monitored goal for every state
resulting from the execution of an observed action. Given a
state s, a heuristic h returns an estimated distance h(s) to
the goal state. If observation oi results in state si, we con-
sider a deviation from a plan to occur if h(si�1) < h(si).



The uptick shown in Figure 3 illustrates a deviation detected
using the FAST-FORWARD heuristic for the two plan exe-
cutions shown in Table 1. Note that during the execution of
the sub-optimal plan (red), deviations occur for actions lead-
ing to time s 2 and 3. By analyzing this plan deviation, we
conclude that actions (unloadTruck BOX TRUCK B) and
(drive TRUCK B A CITY1) do not contribute to achieving
the goal because they increase the estimated distance to the
goal. However, since heuristics may be inaccurate, we utilise
landmarks to further validate deviations.
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Figure 3: Plan execution deviation example using the FAST-
FORWARD heuristic.

3.2 Predicting Non-regressive Actions via
Landmarks

Ordered landmarks effectively provide way-points towards
the monitored goal, identifying what cannot be avoided on
the way to achieving the goal. It should be noted that the ini-
tial (and goal state) are themselves landmarks, as all plans
begin and terminate in these states. Since all plans should
pass through a landmark, we can exploit their presence to
predict what actions might be executed next, either to reach
the landmark, or to move towards a goal. We use such pre-
dictions to check the set of observed actions of a plan exe-
cution to determine which actions do not contribute to the
monitored goal. We formalize this in Algorithm 1.

To predict which actions could reasonably be executed
in the next observation, our algorithm analyzes the closest
landmarks by estimating the distance to the landmarks from
the current state. The algorithm uses an admissible domain-
independent heuristic to estimate the distance to landmarks,
namely the MAX-HEURISTIC, which we denote as hmax.
We consider that the closest fact landmarks are those that
return estimated distance hmax(l) = 0 and hmax(l) = 1.
In this way, the algorithm iterates over a set of ordered fact
landmarks L (Line 3), and, for each landmark l, the MAX-
HEURISTIC estimates the distance from the current state
to l. If the estimated distance to landmark l is hmax(l) =
0 (Line 5), this means that this landmark is in the current
state, and the algorithm selects those actions that contain
such landmark as a precondition, because these can be exe-
cuted immediately (Line 6). Otherwise, if the estimated dis-
tance to landmark l is hmax(l) = 1 (Line 7), this means that

(and (at BOX AIRPORT-E)) = 7

(and (at PLANE AIRPORT-E) (in BOX PLANE)) = 6

(and (at PLANE AIRPORT-C) (at BOX AIRPORT-C)) = 5

(and (at PLANE AIRPORT-E)) = 0

- An applicable action is:

(fly PLANE AIRPORT-E AIRPORT-C)

(and (at TRUCK D)) = 0

- An applicable action is:

(drive TRUCK D B CITY1)

(and (in BOX TRUCK) (at TRUCK AIRPORT-C)) = 3

(and (at BOX B) (at TRUCK B)) = 1

(or

(at TRUCK A) = 1

(at TRUCK C) = 1

(at TRUCK D) = 0

- An applicable action is:

(drive TRUCK D B CITY1))

Listing 2: Predicted upcoming actions for the LOGISTICS
example.

this landmark can be reached by executing a single action,
and the algorithm selects those actions that are applicable
in the current state and contain such landmark as an effect
(Line 8). These actions are selected because they reduce the
distance to the next landmark, and consequently to the mon-
itored goal. Thus, we can estimate, using the observed plan
execution, which actions do not contribute to achieve a goal.

Algorithm 1 Computing Non-regressive actions from landmarks.
Input: ⌅ = h⌃, Ai planning domain, � current state, and L
ordered fact landmarks.
Output: ⌘PActions set of possible upcoming actions.

1: function NONREGRESSIVEACTIONS(⌅, �, L)
2: ⌘PActions  h i
3: for each fact landmark l in L do
4: Al hi
5: if hmax(l) = 0 then . hmax(l) estimates l from �.
6: Al all a in A s.t. l 2 pre(a)
7: else if hmax(l) = 1 then
8: Al all a 2 A s.t pre(a) 2 � ^ l 2 eff(a)+

9: end if
10: ⌘PActions := ⌘PActions [ Al
11: end for
12: return ⌘PActions

13: end function

To exemplify how our algorithm predicts upcoming ac-
tions, let us consider the LOGISTICS problem in Figure 1.
If the current state is the initial state, then the algorithm pre-
dicts upcoming actions that might be executed as the first ob-
servation in the plan execution. As output for this example,
Listing 2 shows fact landmarks (on the left); the estimated
distance from the initial state to fact landmarks (after the
symbol =); and on the bottom of the fact landmarks, which
applicable actions our method predicts to be the first obser-
vation. Note that, there are fact landmarks for which the esti-
mated distance is hmax(l) = 1, because there is no applica-
ble action in the initial state to achieve these fact landmarks.



3.3 Detecting Sub-Optimal Steps

We now develop our approach to detect sub-optimal steps,
bringing together the methods that we presented before
(Subsections 3.1 and 3.2). Algorithm 2 formally describes
our planning-based approach to detect sub-optimal plan
steps. The algorithm takes as input a plan optimality mon-
itoring problem (Definition 7), i.e., a planning domain, an
initial state, a monitored goal, and a set of observed actions
as the execution of an agent plan. The algorithm initially
computes key information using the landmark extraction al-
gorithm proposed by Hoffman et al. (2004). Afterwards, the
algorithm analyzes plan execution by iterating over the set of
observed actions and applying them, checking which actions
do not contribute to the monitored goal. Any such action
is then considered to be sub-optimal. When analyzing plan
execution deviation (via the distance to the goal) our algo-
rithm can use any domain-independent heuristic. To predict
upcoming actions (via landmark consideration), we use the
MAX-HEURISTIC because it is admissible and only a short
distance must be estimated. Line 10 combines these tech-
niques, labelling a step as sub-optimal if an observed action
is not in the set of predicted upcoming actions, and the esti-
mated distance of the current state is greater than the previ-
ous one.

We note that our approach iterates over observations, and
during each iteration, also iterates over all fact landmarks.
Since |L|  |O|, it’s complexity is giving a complexity
O(|O|2) in the worst case. However, we also note that this
result ignores the complexity of landmark extraction (which
is PSPACE-complete). We overcome this latter restriction
through the use of a landmark extraction algorithm (Hoff-
mann, Porteous, and Sebastia 2004) that extracts only a sub-
set of all possible landmarks.

Algorithm 2 Plan Optimality Monitoring.
Parameters: ⌅ = h⌃, Ai planning domain, I initial state,
G monitored goal, and O observed actions.
Output: ASubOptimal as sub-optimal actions.

1: function MONITORPLANOPTIMALITY(⌅,I,G,O)
2: ASubOptimal  hi . Actions that do not contribute to

achieve the monitored goal G.
3: L EXTRACTLANDMARKS(I , G)
4: �  I . � is the current state.
5: ⌘PActions  NONREGRESSIVEACTIONS(⌅, �, L)
6: DG  ESTIMATEGOALDISTANCE(�, G) . A desired

domain-independent heuristic to estimate goal G from �.
7: for each observed action o in O do
8: �  �.APPLY(o)
9: D0

G  ESTIMATEGOALDISTANCE(�, G)
10: if o /2 ⌘PActions ^ (D0

G > DG) then
11: ASubOptimal  ASubOptimal [ o
12: end if
13: ⌘PActions  NONREGRESSIVEACTIONS(⌅, �, L)
14: DG  D0

G

15: end for
16: return ASubOptimal

17: end function

4 Experiments and Evaluation
We evaluate our plan optimality monitoring approach over
several widely used planning domains in the literature4,
most of which are inspired by real-world scenarios. The
BLOCKS-WORLD domain consists of a set of stackable
blocks, in which goals involve finding a sequence of actions
that achieves a final configuration of blocks. The DRIVER-
LOG domain consists of drivers that can walk between loca-
tions and trucks that can drive between locations, in which
goals consist of transporting packages between locations.
DEPOTS combines transportation and stacking, in which
goals involve moving and stacking packages by using trucks
and hoists between depots. EASY-IPC-GRID consists of an
agent that moves in a grid from cells to others by transport-
ing keys to open locked locations. The FERRY domain con-
sists of set of cars that must be moved to desired locations
using a ferry that can carry only one car at a time. LOGIS-
TICS, described previously, consists of airplanes and trucks
transporting packages between locations (e.g., airports and
cities). MICONIC involves transporting a number of passen-
gers using an elevator to reach destination floor. SATELLITE
involves using one or more satellites to make observations,
by collecting data and down-linking the data to a desired
ground station. SOKOBAN involves pushing a set of boxes
into specified locations in a grid with walls. Finally, ZENO-
TRAVEL is a domain where passengers can embark and dis-
embark onto aircraft that can fly at two alternative speeds
between locations.

For each of these domains, we selected 15-30 associated
non-trivial problem instances, with each problem instance
also associated to a set of observations (i.e., plan execu-
tions). This set of observations can represent either an opti-
mal or a sub-optimal plan execution. We generate plans (op-
timal and sub-optimal) using open-source planners, such as
BLACKBOX (1998), FAST-DOWNWARD (2011), FF (2001),
and LAMA (2010). For sub-optimal plans, we annotated
manually the sub-optimal steps, and enumerate how many
sub-optimal steps each plan has. These steps consist of ac-
tions that do not contribute for achieving the monitored goal,
representing steps that our approach aims to detect. We eval-
uate our approach according to several metrics. Precision is
the ratio between true positive results, and the sum of true
positive and false positive results. True positive results rep-
resent the number of sub-optimal actions detected that do
not contribute to achieve the monitored goal. False positive
results represent the number of actions that our approach la-
belled as a sub-optimal action, which is in fact an optimal
action. Precision provides the percentage of positive predic-
tions that is correct. Recall is the ratio between true posi-
tive results, and the sum of the number of true positives and
false negatives. Here, a false negative is a sub-optimal ac-
tion that is not detected by our approach. Recall provides the
percentage of positive cases that our approach has detected.
The F1-score is a measure of accuracy that aims to provide
a trade-off between Precision and Recall. We ran all our ex-
periments on a dual-core Intel Core i5 processor running at
2.5 GHz with 8 GB of RAM.

4http://ipc.icaps-conference.org



h
adjsum

h
adjsum2

h
adjsum2M

Domain |O| |L| Time Precision / Recall / F1-score Time Precision / Recall / F1-score Time Precision / Recall / F1-score
BLOCKS-WORLD (30) 15.2 20.1 0.25 63.7% / 94.8% / 76.2% 0.19 100% / 74.2% / 85.2% 0.47 74.4% / 91.4% / 82.1%

DRIVER-LOG (20) 20.1 53.6 0.71 100% / 77.7% / 87.5% 0.68 100% / 94.4% / 97.1% 1.33 100% / 100% / 100%
DEPOTS (30) 16.7 64.7 1.34 71.8% / 88.4% / 79.3% 1.22 81.2% / 100% / 89.6% 2.15 75.6% / 93.3% / 83.5%

EASY-IPC-GRID (30) 14.1 48.5 0.81 100% / 96.1% / 98% 0.77 100% / 100% / 100% 0.98 100% / 75% / 85.7%
FERRY (30) 13.8 18.1 0.23 88% / 78.5% / 83.1% 0.18 88% / 78.5% / 83.1% 0.34 80% / 42.8% / 55.8%

LOGISTICS (30) 20.8 24 0.47 100% / 85.7% / 92.3% 0.35 100% / 91.3% / 95.4% 0.89 100% / 91.3% / 95.4%
MICONIC (30) 18.1 19.4 0.29 100% / 86.9% / 93.1% 0.24 100% / 82.6% / 90.4% 0.36 100% / 82.6% / 90.4%

SATELLITE (20) 25.7 60.8 5.41 100% / 26.6% / 42.1% 4.35 87.5% / 46.6% / 60.8% 9.58 88.8% / 53.3% / 66.6%
SOKOBAN (20) 24 76.5 3.45 75% / 75% / 75% 2.26 77.7% / 58.3% / 66.6% 4.13 66.6% / 66.6% / 66.6%

ZENO-TRAVEL (15) 12.2 38.7 1.07 87.5% / 50% / 63.6% 0.86 100% / 92.8% / 96.2% 1.52 100% / 85.7% / 92.3%

Table 2: Plan Optimality Monitoring experimental results (1).

h
combo

h
↵

h
sum

Domain |O| |L| Time Precision / Recall / F1-score Time Precision / Recall / F1-score Time Precision / Recall / F1-score
BLOCKS-WORLD (30) 15.2 20.1 0.51 63.7% / 94.8% / 76.2% 0.21 100% / 74.2% / 85.2% 0.18 63.7% / 94.8% / 76.2%

DRIVER-LOG (20) 20.1 53.6 1.38 100% / 77.7% / 87.5% 0.74 100% / 94.4% / 97.1% 0.85 100% / 77.7% / 87.5%
DEPOTS (30) 16.7 64.7 2.46 71.4% / 96.1% / 81.9% 1.43 81.2% / 100% / 89.6% 1.39 71.8% / 88.4% / 79.3%

EASY-IPC-GRID (30) 14.1 48.5 1.08 100% / 96.1% / 98% 0.86 100% / 100% 100% 0.79 100% / 96.1% / 98%
FERRY (30) 13.8 18.1 0.36 80% / 78.5% / 83.1% 0.32 80% / 78.5% / 83.1% 0.19 80% / 78.5% / 83.1%

LOGISTICS (30) 20.8 24 1.11 100% / 85.7% / 92.3% 0.55 100% / 91.3% / 95.4% 0.43 100% / 85.7% / 92.3%
MICONIC (30) 18.1 19.4 0.44 100% / 86.9% / 93.1% 0.27 100% / 82.6% / 90.4% 0.21 100% / 86.9% / 93.1%

SATELLITE (20) 25.7 60.8 9.81 100% / 40% / 57.1% 4.94 87.5% / 46.6% / 60.8% 4.53 100% / 26.6% / 42.1%
SOKOBAN (20) 24 76.5 4.28 90.9% / 83.3% / 86.9% 2.22 77.7% / 58.3% / 66.6% 2.07 75% / 75% / 75%

ZENO-TRAVEL (15) 12.2 38.7 1.45 87.5% / 50% / 63.6% 0.99 100% / 92.8% / 96.2% 0.92 87.5% / 50% / 63.6%

Table 3: Plan Optimality Monitoring experimental results (2).

Since our approach can exploit any domain-independent
heuristic to analyze plan execution deviation, we evalu-
ated our approach using several admissible and inadmissi-
ble heuristics. MAX-HEURISTIC (hmax) is an admissible
heuristic proposed by Bonet and Geffner in (2001), and is
based on delete-list relaxation, in which delete-effects of ac-
tions are ignored during calculation of the heuristic cost to
a goal. This calculation is the cost of a conjunctive goal,
which represents the maximum cost to achieve each of the
individual facts. SUM (hsum) is an inadmissible heuristic
proposed by Bonet and Geffner in (2001), and works in a
similar manner to MAX-HEURISTIC, but is more informa-
tive. ADJUSTED-SUM (hadjsum) is an inadmissible heuris-
tic (2002) that improves SUM by considering both negative
and positive interactions among facts; ADJUSTED-SUM2
(hadjsum2) is an inadmissible heuristic (2002) that improves
the ADJUSTED-SUM by combining the computation of the
SET-LEVEL heuristic and the relaxed plan. The SET-LEVEL
heuristic estimates the cost to a goal by returning the level
in the planning graph where all facts of the goal state
are reached without any mutex free (2000). ADJUSTED-
SUM2M (hadjsum2M ) is an inadmissible heuristic (2002)
that improves ADJUSTED-SUM2. COMBO (hcombo) is an in-
admissible heuristic (2002) that combines the computation
of the ADJUSTED-SUM and SET-LEVEL heuristics. Finally,
FAST-FORWARD (hff ) is a well-known inadmissible heuris-
tic in the planning community (Hoffmann and Nebel 2001)
that relies on state-space search and estimates the goal dis-
tance by using delete-list relaxation.

Tables 2 and 3 show the experimental results of our ap-
proach over the selected domains and heuristics. Each ta-
ble row details results for a different domain showing av-
erages for the number of observations |O| across problem
instances; number of extracted landmarks |L|; monitoring
time (in seconds); Precision; Recall, and F1-score). The
high average number of observations made (|O|), ranging
between 12.2 and 76.5, indicates that all plans we analyze
are non-trivial in complexity. The results show that for the
DRIVER-LOG and EASY-IPC-GRID domains our approach
yields perfect results (100% for all metrics) when using
an appropriate heuristic (ADJUSTED-SUM2M and FAST-
FORWARD respectively). Apart from the SATELLITE do-
main that under-performs for all metrics, our approach is
near-perfect for monitoring optimality while having low run-
time and yielding very good results with different heuristics.
We can also see that some heuristics outperform others for
the same domain, for instance, ADJUSTED-SUM2M under-
performs in the FERRY domain. For almost all evaluated do-
mains (except SATELLITE) we obtain high F1-Scores and
perfect or near-perfect accuracy (depending on the heuris-
tic). Thus, our approach effectively detects sub-optimal plan
steps in deterministic planning domains.

5 Related Work
To the best of our knowledge, the most recent prior work
that monitors plan optimality was developed by Fritz and
McIlraith (2007). This work formalizes the problem of mon-
itoring plan optimality by using situation calculus, a logical



formalism to specify and reason about dynamical systems.
Fritz and McIlraith seek to determine whether an execution
follows an optimal plan, but — unlike our work — do not
aim to determine which actions are responsible for deviation
from an optimal plan.

Regarding planning-based approaches that monitor the
execution of agent plans, we note four goal/plan recognition
approaches. Ramı́rez and Geffner (2009) propose the use
of planning techniques (i.e., modified planners and heuris-
tics) to eliminate goals from a candidate set due to an in-
creasing estimated distance from the current state. Follow-
up work (Ramı́rez and Geffner 2010) proposes a proba-
bilistic plan recognition approach using off-the-shelf plan-
ners. Pattison and Long (2010) develop IGRAPH, a prob-
abilistic heuristic-based goal recognition over planning do-
mains. IGRAPH uses heuristic estimation and domain anal-
ysis to recognize which goal an observed agent is pursuing.
Most recently, Pereira et al. (2016; 2017) develop goal/plan
recognition approaches that use planning landmarks to build
heuristics for recognizing goals from observations.

6 Conclusions
In this paper, we have introduced the plan optimality mon-
itoring problem and developed a domain-independent ap-
proach to solving this problem. Our heuristic uses planning
techniques, but obviating the need to execute a full plan-
ning algorithm by using landmarks and domain-independent
heuristics. The resulting approach provides a basis from
which numerous plan recognition and plan abandonment de-
tection approaches can be developed and improved, since it
provides useful information that can be used in planning-
based approaches for recognizing goals and plans. It can also
be used to repair sub-optimal plans, e.g., by detecting which
parts of the plan is sub-optimal, and then improve it.

As we show in our experiments and evaluation, our ap-
proach yields good results in detecting sub-optimal plan
steps by dealing with realistic well-known deterministic
planning domains. As future work, we intend to use more
modern heuristics (Helmert and Domshlak 2009; Scherrer,
Pommerening, and Wehrle 2015), and explore other plan-
ning techniques, such as symmetries in planning (Shleyfman
et al. 2015), and temporal landmarks (Karpas et al. 2015).
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