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Abstract

There are various knowledge-based activity recognition ap-
proaches that rely on manual definition of rules to describe
user behaviour. These rules are later used to generate com-
putational models of human behaviour that are able to reason
about the user behaviour based on sensor observations. One
problem with these approaches is that the manual rule defi-
nition is time consuming and error prone process. To address
this problem, in this paper we outline an approach that learns
the model structure from textual sources and later optimises
it based on observations. The approach includes extracting
the model elements and generating rules from textual instruc-
tions. It then learns the optimal model structure based on ob-
servations in the form of manually created plans and sensor
data. The learned model can then be used to recognise the be-
haviour of users during their daily activities. We illustrate the
approach with an example from the cooking domain.

Introduction
Some activity recognition (AR) approaches utilise human
behaviour models (HBM) in the form of rules. These rules
are used to generate probabilistic models with which the
system can infer the user actions and goals (Hiatt, Harri-
son, and Trafton 2011; Ramirez and Geffner 2011; Krüger
et al. 2014). Such types of models are also known as com-
putational state space models (CSSM) (Krüger et al. 2014).
They treat activity recognition as a plan recognition prob-
lem, where given an initial state, a set of possible actions,
and a set of observations, the executed actions and the user
goals have to be recognised (Ramirez and Geffner 2011).
These approaches rely on prior knowledge to obtain the con-
text information needed for building the user actions and
the problem domain. The prior knowledge is provided by
a domain expert or by the model designer. This knowledge
is then used to manually build a CSSM. The manual mod-
elling is however time consuming and error prone (Nguyen,
Kambhampati, and Do 2013).

To address this problem, different works propose the
learning of models from sensor data (Zhuo and Kambham-
pati 2013). One problem these approaches face is that sen-
sor data is expensive (Ye, Stevenson, and Dobson 2014).
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Furthermore, sensors are sometimes unable to capture fine-
grained activities (Chen et al. 2012), thus, they might poten-
tially not be learned.

To reduce the need of domain experts and / or sensor
data, one can substitute them with textual data (Philipose
et al. 2004). More precisely, one can utilise the knowledge
encoded in textual instructions to learn the model struc-
ture. Textual instructions specify tasks for achieving a given
goal without explicitly stating all the required steps (Brana-
van, Zettlemoyer, and Barzilay 2010). On the one hand,
this makes them a challenging source for learning a model
(Branavan, Zettlemoyer, and Barzilay 2010). On the other
hand, they are usually written in imperative form, have a
simple sentence structure, and are highly organised. Com-
pared to rich texts, this makes them a better source for iden-
tifying the sequence of actions needed for reaching the goal
(Zhang et al. 2012).

According to (Branavan et al. 2012), to learn a model of
human behaviour from textual instructions, the system has
to: 1. extract the actions’ semantics from the text, 2. learn
the model semantics through language grounding, 3. and,
finally, to translate it into computational model of human
behaviour for planning problems. To address the problem of
learning models of human behaviour for AR, we extend the
steps proposed by (Branavan et al. 2012). We add the need
of 4. learning the domain ontology that is used to abstract
and / or specialise the model. We also replace step 3. (models
for planning problems) with computational models for ac-
tivity recognition as the targeted model format, as they are
able to reason about the human behaviour based on noisy or
ambiguous observations (Hiatt, Harrison, and Trafton 2011;
Ramirez and Geffner 2011).

The contribution of this paper is twofold: (1) we present
an approach for learning HBM from textual instructions. In
difference to existing approaches for language grounding,
our approach learns a complex domain ontology that is later
used to generalise or specialise the model; (2) it is the first
attempt at learning CSSMs for activity recognition from tex-
tual instructions. In the following we outline our approach
for learning HBM for AR and illustrate it with an example
from the kitchen domain. This work is based on the extended
abstract in (Yordanova 2016).
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Related work
There are various approaches to learning models of human
behaviour from textual instructions: through grammatical
patterns that are used to map the sentence to a machine
understandable model of the sentence (Zhang et al. 2012;
Branavan et al. 2012); through machine learning techniques
(Sil and Yates 2011; Chen and Mooney 2011); or through
reinforcement learning approaches that learn language by
interacting with an external environment (Branavan et al.
2012; Branavan, Silver, and Barzilay 2011).

Models learned through model grounding have been used
for plan generation (Li et al. 2010; Branavan et al. 2012),
for learning the optimal sequence of instruction execution
(Branavan, Zettlemoyer, and Barzilay 2010), for learning
navigational directions (Chen and Mooney 2011), and for
interpreting human instructions for robots to follow them
(Kollar et al. 2014; Tenorth, Nyga, and Beetz 2010). To our
knowledge, any attempts to apply language grounding to
learning models for AR rely on identifying objects from tex-
tual data and do not build a computational model of human
behaviour (Ye, Stevenson, and Dobson 2014). This, how-
ever, suggests that models learned from text could be used
for AR tasks.

Existing approaches that learn human behaviour from text
make simplifying assumptions about the problem, making
them unsuitable for more general AR problems. More pre-
cisely, the preconditions and effects are learned through ex-
plicit causal relations, that are grammatically expressed in
the text (Li et al. 2010; Sil and Yates 2011). They however,
either rely on initial manual definition to learn these rela-
tions (Branavan et al. 2012), or on grammatical patterns and
rich texts with complex sentence structure (Li et al. 2010).
They do not address the problem of discovering causal rela-
tions between sentences, but assume that all causal relations
are expressed within the sentence (Tenorth, Nyga, and Beetz
2010). They also do not identify implicit relations.

However, to find causal relations in instructions without a
training phase, one has to rely on alternative methods, such
as time series analysis (Yordanova 2015a). Moreover, the
initial state is manually defined and there are only a few
works that identify possible goals based on the textual in-
structions (Zhang et al. 2012; Babeş-Vroman et al. 2012).
This limits the approaches to a predefined problem and does
not allow the reasoning about different situations and goals.
This is, however, an important requirement for any assistive
system that relies on activity recognition.

Furthermore, they rely on manually defined ontology, or
do not use one. However, one needs an ontology to deal with
model generalisation problems and as a means for express-
ing the semantic relations between model elements.

Moreover, there have been previously no attempts at
learning CSSMs from textual instructions. Existing CSSM
approaches rely on manual rules’ definition to build the pre-
conditions and effects of the models. For example, (Hiatt,
Harrison, and Trafton 2011) use the cognitive architecture
ACT-R while other approaches rely on a PDDL1-like nota-
tions to describe the possible actions (Ramirez and Geffner

1Planning Domain Definition Language

2011; Krüger et al. 2014). In that sense, our work is the first
attempt at learning CSSMs from texts.

In this work we represent the rules in a PDDL-like nota-
tion in the form described in (Yordanova and Kirste 2015).

Approach

Identifying text elements of interest

To extract the text elements that describe the user behaviour,
the user actions and their relations to other entities in the en-
vironment have to be identified. This is achieved through as-
signing each word in a text the corresponding part of speech
(POS) tag. Furthermore, the dependencies between text el-
ements are identified through dependencies parser. To iden-
tify the human actions, the verbs from the POS-tagged text
are extracted. We are interested in present tense verbs, as tex-
tual instructions are usually written in present tense, imper-
ative form. We also extract any nouns that are direct objects
to the actions. These will be the objects in the environment
with which the human can interact. Furthermore, we extract
any nouns that are in conjunction to the identified objects.
These will have dependencies to the same actions, to which
the objects with which they are in conjunction are depen-
dent. Figure 1 gives an example of a sentence and the iden-

Take the clean knife from the counter. 

VB DT NN IN DT NN

dobj prep_from

Action Object Location (from)

JJ
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amod

Figure 1: Elements of a sentence necessary for the model
learning.

tified elements based on the POS-tags and dependencies.
Moreover, any preposition relations such as in, on, at, etc.

between the objects and other elements in the text are identi-
fied. These provide spacial or directional information about
the action of interest. For example, in the sentence “Put the
apple on the table.” our action is put, while the object on
which the action is executed is apple. The action is executed
in the location table identified through the on preposition.
Finally, we extract “states” from the text. The state of an ob-
ject is the adjectival modifier or the nominal subject of an
object. As in textual instructions the object is often omitted
(e.g. “Simmer (the sauce) until thickened.”), we also inves-
tigate the relation between an action and past tense verbs or
adjectives that do not belong to an adjectival modifier or to
nominal subject, but that might still describe this relation.
The states give us information about the state of the envi-
ronment before and after an action is executed.



Extracting causal relations from textual
instructions
To identify causal relations between the actions, and be-
tween states and actions, we use an approach proposed in
(Yordanova 2015a). It transforms every word of interest in
the text into a time series and then applies time series analy-
sis to identify any causal relations between the series. More
precisely, each sentence is treated as a time stamp in the time
series. Then, for each word of interest, the number of oc-
currences it appears in the sentence is counted and stored
as element of the time series with the same index as the
sentence index. We generate time series for all actions and
for all states that change an object. To discover causal rela-
tions based on the time series, we apply the Granger causal-
ity test. It is a statistical test for determining whether one
time series is useful for forecasting another. More precisely,
Granger testing performs statistical significance test for one
time series, “causing” the other time series with different
time lags using auto-regression (Granger 1969). The causal-
ity relationship is based on two principles. The first is that
the cause happens prior to the effect, while the second states
that the cause has a unique information about the future
values of its effect. Given two sets of time series x
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F-test is then used to determine whether the lagged x terms
are significant.

Take the knife from the counter. 
Cut the carrots. 
Put the knife on the counter. 
Take the pot from the counter. 
Put the pot on the stove. 
Put the carrots in the pot. 
Turn on the stove. 
Take the wooden spoon from the counter. 
Put the wooden spoon in the pot.

Instruction: cook a carrot soup
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Figure 2: The procedure for discovering causal relations.

Figure 2 shows the procedure of converting text elements
into time series and using them to discover causal relations.

Building the domain ontology
The domain ontology is divided into argument and action
ontology. The argument ontology describes the objects, lo-
cations, and any elements in the environment that are taken
as arguments in the actions. The action ontology represents
the actions with their arguments and abstraction levels.

To learn the argument ontology, a semantic lexicon (e.g.
WordNet (Miller 1995)) is used to build the initial ontol-
ogy. As the initial ontology does not contain some types
that unify arguments applied to the same action, the ontol-
ogy has to be extended. To do that, the prepositions with

soup

food with

carrot

matter take-object

entity

actions-users-locations-objects

take--object-from---

take--knife-sink- take--knife-counter-

Argument ontology Action ontology

Figure 3: Argument ontology (left): objects identified
through POS-tagging and dependencies (blue); hierarchy
identified through WordNet (black); types identified through
the relations of objects to prepositions (red); types identi-
fied based on similar preconditions (green); types identified
through action abstraction (yellow). Action ontology (right):
abstract representation of an action (uppermost layer); ab-
stract representation of action take; concrete instances of ac-
tion take (bottom layer).

which actions are connected to indirect objects are also ex-
tracted (e.g. in, on, etc.). They are then added to the argu-
ment ontology as parents of the arguments they connect. In
that manner, the locational properties of the arguments are
described (e.g. water has the property to be in something).
During the learning of the action templates and their precon-
ditions, additional parent types are added to describe objects
used in actions that have the same preconditions. Further-
more, types that are not present in the initial ontology, but
which objects are used only in a specific action, are com-
bined in a common parent type. Figure 3 (left) shows an
example of an argument ontology. To learn the action ontol-
ogy, the process proposed in (Yordanova and Kirste 2015)
is adapted for learning from textual data. Based on the ar-
gument ontology, the actions are abstracted by replacing the
concrete arguments with their corresponding types from an
upper abstraction level. In that manner, the uppermost level
will represent the most abstract form of the action. For ex-
ample, the sentence “Put the apple on the table.” will yield
the concrete action put apple table, and the abstract action
put object location. Figure 3 (right) shows an example of an
action ontology. This representation is used as a basis for the
precondition-effect rules that describe the actions.

Generating precondition-effect rules
The next step in the process is the generation of
precondition-effect rules that describe the actions and the
way they change the world. The basis for the rules is the
action ontology. Each abstract action from the ontology is
taken and converted to an action template that has the form
shown in Figure 4. Basically, the action name is the first part
of the abstract entity put object location, while the two pa-
rameters are the second and the third part of the entity. Fur-
thermore, the default predicate (executed-action) is added to
both the precondition and the effect, whereas in the precon-
dition it is negated.



(:action put

:parameters (?o - object ?to - location)

:precondition (and

(not (executed-put ?o ?to)))

:effect (and

(executed-put ?o ?to))

)

Figure 4: Example of an action template put in the PDDL
notation.

Now the causal relations extracted from the text are used
to extend the actions. The execution of each action that was
identified to cause another action is added as a precondition
to the second action. For example, to execute the action put,
the action take has to take place. That means that the predi-
cate executed-take ?o has to be added to the precondition of
the action put. Furthermore, any states that cause the action
are also added in the precondition. For example, imagine the
example sentence is extended in the following manner: “If
the apple is ripe, put the apple on the table.” In that case the
state ripe causes the action put. For that reason the predicate
(state-ripe) will also be added to the precondition. This pro-
cedure is repeated for all available actions. The result is a set
of candidate rules that describe a given behaviour.

As it is possible that some of the rules contradict each
other, a refinement step is added. This is done by converting
the argument ontology to the corresponding PDDL format
to represent the type hierarchy. The initial and goal states
are then generated by assigning different combinations of
truth values to the set of predicates. Different combinations
of initial-goal states pairs are generated from the sets of ini-
tial and goal states. Later, an initial-goal state pair as well
as the rules and the type hierarchy are fed to a planner and
any predicates that prevent the reaching of the goal are re-
moved from the preconditions. This results in a set of candi-
date models from which the optimal model will be selected.

Learning the optimal model structure
As the model will be applied to activity recognition tasks,
it is important to learn a model structure that optimises the
probability of selecting the correct action2. To achieved that,
two steps are followed (see Figure 5). First, the model is

Plan
1. (take knife counter)
2. (cut carrots)
3. (put knife counter)
4. (take pot counter)

…

p(a1:T |Mn) remove from 
candidate models

Sensor data
1. 1.242334e-23 
2. 3.634459e-28 
3. 1.968862e-26 
4. 5.733097e-163

…
p(a1:T |Ml) optimal model

> T

< T

argmax

T: a threshold value 

a candidate model Mn  is applied to a set of plans

a model Ml that explains the plans is applied to sensor-
based AR problem

Figure 5: Learning the optimal model for a given situation
based on observations.

2In our case, that is the actual action executed by the user.

optimised based on its ability to explain existing plans de-
scribing the user behaviour. This approach is similar to the
methods for model learning through observations (Brana-
van, Silver, and Barzilay 2011; Goldwasser and Roth 2014).
Here, the observations are provided in the form of manually
produced plans. The plans are obtained by asking different
persons to provide a plan based on textual description of a
given task. Models that are not able to predict the plan, re-
ceive no reward. From the remaining set of models, those
which maximise the probability of executing the plan above
a given threshold are selected. The probability is calculated
based on Formula 1.
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M is the model used to explain the plan, a
t

is the action exe-
cuted at time t, k is a set of features, f is an action selection
heuristic, and � is its weight. The action selection heuristics
are goal distance, landmarks, cognitive heuristics, etc (Yor-
danova and Kirste 2015).

After selecting the set of most promising models, they
are further optimised. This is done by testing their ability to
recognise activities and goals based on sensor observations.
As a base for this step, the validation steps from the develop-
ment process proposed in (Yordanova and Kirste 2015) are
used. Formula 1 is once again used to select the model that
best explains the observations.

TextToHBM: an Example
To illustrate the approach, we take as an example an experi-
ment description of a person who is cooking a carrots soup.
A description of the experiment can be found in (Krüger
et al. 2014) and the sensor dataset itself in (Krüger et al.
2015). This could be considered as a simplified example, as
the textual instruction contains explicit description of each
execution step. Table 1 shows an excerpt of the instructions
provided for executing the experiment. First, all actions in
the dataset are identified3. For the carrots soup example, 15
actions were identified. Furthermore, all arguments are iden-
tified. For this example, 19 arguments were identified one of
which was incorrectly labeled as noun (the verb “wash”).
Five of the arguments serve as locations (e.g. “counter”,
“stove” etc.) describing places where actions are executed.
The rest are objects upon which the action is executed (e.g.
“water”, “plate”, etc). Moreover, 7 prepositions were discov-
ered that describe location, direction or means by which an
action is achieved (e.g. “in”, “from”, “with”). No states were
discovered in this example. This is due to the oversimplified
sentence structure that follows the pattern “action direct-
object(s) location(s)”.

3This can be done with the help of parser that POS-tags the text.
Later, all present tense verbs are extracted, as they usually describe
an action that is executed.



1 Take t h e k n i f e from t h e c o u n t e r .
2 Cut t h e c a r r o t s .
3 Pu t t h e k n i f e on t h e c o u n t e r .
4 Take t h e p o t from t h e c o u n t e r .
5 Pu t t h e p o t on t h e s t o v e .
6 Pu t t h e c a r r o t s i n t h e p o t .
7 Turn on t h e s t o v e .
8 Take t h e wooden spoon from t h e c o u n t e r .
9 Pu t t h e wooden spoon i n t h e p o t .

10 Cook f o r 10 m i n u t e s .
11 Turn o f f t h e s t o v e .
12 Open t h e cupboard .
13 Take a p l a t e from t h e cupboard .
14 Take a g l a s s from t h e cupboard .
15 Pu t t h e p l a t e and t h e g l a s s on t h e c o u n t e r .

Table 1: Excerpt from instruction describing the cooking of
a carrot soup.

wash turn on turn off take sit put open go
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 0
3 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0
9 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0
12 0 1 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 1 0 0 0 0
15 0 0 0 0 0 1 0 0

Table 2: The time series corresponding to the text in Table1.

The next step is to represent each action as a time se-
ries. More precisely, each element in the time series is rep-
resented with a number. This number indicates the number
of occurrences of the given action in the current sentence.
Table 1 shows the time series to some of the words extracted
from the text in Table 1 In that manner, each of the words
(or pairs of words) of interest is assigned a time series. This
allows the utilisation of time series analysis for the discov-
ery of implicit causal relations in textual instructions. The
resulting time series can be downloaded from (Yordanova
2015b).

Figure 6 shows the causal relations between actions dis-
covered for cooking a carrots soup.

After identifying the causal relations, the argument ontol-
ogy is learned. This is done by feeding the identified nouns
to WordNet in order to build the initial ontology. Then,
based on the relations described through prepositions, sim-
ilar causal relations, and abstraction in the action ontology,
the argument ontology is refined and new relations are iden-
tified. Figure 7 shows the resulting ontology and the steps
for building it. Similarly to the argument ontology, the ac-

take

wash

put

cut

open

close

fill

turn_off

turn_on

sit

get_up

Figure 6: Causal relations discovered for cooking a carrot
soup. Black indicates relations discovered by a human an-
notator, green: discovered with the proposed approach.

tion ontology is based on the identified actions, the objects
they are executed on and the indirect objects or locations
where they are executed. Each abstraction level of the action
ontology is based on the corresponding abstraction level in
the argument ontology.

In the next step, based on the action ontology and the iden-
tified causal relations, the precondition-effect rules are built.
In this example, the rules are built based on 17 predicates.
As there were no states discovered, the predicates indicate
whether an action is executed or not (e.g. “(executed-wash
?f - wash-obj)”). Based on these rules, 20 action templates
were constructed. The templates are more than the action
classes because the same action class has different precon-
ditions or effects in different situations. Figure 8 shows the

(:action close

:parameters (?c - area)

:duration (closeDuration)

:precondition (and

(not (executed-close ?c))

(executed-open ?c)

)

:effect (and

(executed-close ?c)

(not (executed-open ?c))

)

:observation (setActivity (activity-id

close))

)

Figure 8: The action template close in the PDDL notation.

generated precondition-effect rule for the action “close”. It
can be seen that apart from the typical PDDL action nota-
tion, there are two additional slots: “:duration” and “:obser-
vation”. These are later used for performing activity recog-
nition. There, the actions have durations and are observed
through sensor observations. These slots allow linking the
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Figure 7: Left: Learning the argument ontology. Step 1 (blue): objects identified through POS-tagging and dependencies; step 2
(black): hierarchy identified through WordNet; step 3 (red): types identified through the relations of objects to prepositions; step
4 (green): types identified based on similar preconditions; step 5 (yellow): types identified through action abstraction. Right:
Learning the action ontology: (uppermost layer): abstract representation; (middle layer): abstract representation of action “take”;
(bottommost layer): concrete representation of action “take””.

behaviour model to the underlying action duration distribu-
tion and the expected type of observations.

After defining the action rules, the next step is to generate
the initial and goal states. The initial and goal states repre-
sent different combinations of truth values over all ground
predicates. In our example we have 204 ground predicates
which means that we have 204! possible combinations. To
reduce this number, we utilise some prior knowledge. We as-
sume that none of the objects is taken, no doors or cupboards
are open, and no devices are turned on. This means that the
predicates (executed-close), (executed-put), (executed-turn-
off) are set to true. We also assume that apart from these,
no other actions have been executed at the beginning of the
problem. This leaves us with only one initial state. Similarly,
for the goal state we assume that the actions “cook”, “drink”,
“eat”, and “wash” (applied to the different objects) have to
be executed and for the rest we do not care. As in the exper-
iment we conducted to collect the sensor data, different per-
sons chose to wash different objects, we generate different
goal conditions. There, the predicates indicating the execu-
tion of the actions “cook”, “drink”, and “eat” are always set
to true, and the truth value of the predicates describing the
execution of the “wash” actions vary. As we have 7 objects
on which “wash” can be executed, this means we have 5040
combinations of goal conditions.

Having defined the initial state and the goals, we use
a state of the art planner to identify any problems in the
models that prevent reaching the goal state. For exam-
ple, the causal relation “fill causes take” was discovered,
which means that in the precondition of “take” the pred-
icate (executed-fill) has to be true. However, this prevents
the model from reaching the goal state as no objects can be
taken unless the action “fill” is executed. For that reason we
remove this condition from the precondition of “take”. This
procedure is repeated for all models until all problems pre-
venting the models from reaching a goal state are removed.

The result of this step is a set of causally correct models
that contain all execution sequences from the initial state to

the possible goal states. If the model can be fully extended
it can be seen as a directed graph where the nodes are states
and the transitions are actions. The graph starts with the ini-
tial state where the probability of this state is one in the case
of only one state, otherwise there is a probability distribu-
tion over all initial states. The transitions from one state to
another also have probabilities, which are defined based on
action selection strategy such as the distance to the goal, or
how often the action is executed etc. Figure 9 shows an ex-
ample of such graph where the dots are the states and the
connections between them are the actions. The graph starts
with one initial state and then follows different paths to the
goal states (red dots at the bottom of the graph). In this case
the graph was only partially explored with iteratively deep-
ening depth first search due to the large state space. The red
line shows the sequence of actions the user actually exe-
cuted.

As we now have 5040 candidate models, we use a set of
plans describing the execution sequences in the experiment
we conducted. In this example the plans are generated from
the annotation of the video logs recorded during the exper-
iment. This step reduces the model to one goal condition
where apart from “cook”, “eat”, and “drink”, “wash glass”,
“wash carrot”, and “wash plate” have to be executed. For
the remaining predicates, we do not care about their truth
value4.

The resulting model has very large branching factor5. This
reduces the probability of selecting the actual action being
executed, especially in the case of noisy or ambiguous obser-
vations. For that reason an optimisation step is applied. Us-
ing the model and sensor observations describing the execu-
tion sequences of different users preparing a carrot soup, the

4This one condition generates a set of possible goal states that
can be reached. In other words, our model now contains one initial
state and several goal states in which the goal condition is satisfied.

5This is the maximum number of actions executable from a
given state, or in other words the maximum number of connections
that leave a dot in Figure 9.



Figure 9: Partially extended state space graph of the model.

transition probabilities are then adjusted and the observed
sequences receive higher probability than those that are not
observed. In that manner, more typical behaviour is more
likely to be observed, but in the same time less probable be-
haviour is not completely removed, so that in case of new
observations, the model can be further adjusted.

Discussion
In this work we proposed an approach that automatically ex-
tracts knowledge from textual instructions and learns models
of human behaviour that are later used for activity recog-
nition. One problem the approach faces is the discovery of
causal relations. As textual instructions such as recipes are
usually written in informal manner, their sentences often
lack the direct objects. This in turn makes it difficult to dis-
cover the objects on which an action is executed and also re-
duces the ability of the approach to discover causal relations.
For that reason, we believe that the approach could benefit
from anaphora resolution techniques in order to include the
missing direct objects to the sentence.

Another problem is the generation of initial and goal
states. As it could be seen from the example, even with sim-
plifying assumptions, there is a very large number of pos-
sible combinations. In that sense, the approach could bene-
fit of automated techniques that discover improbable initial
and goal conditions in the text. This could potentially reduce
the number of candidate models thus reducing the compu-
tational effort required to evaluate the applicability of the
models to the problem at hand.

Finally, the approach could potentially benefit from utilis-
ing multiple textual instructions to learn the candidate mod-
els. This will allow the generation of richer models that con-
tain more contextual information and that are not tailored for
only one specific case.

Current Results and Future Work
In a previous work we proposed an approach of extracting
causal relations from textual instructions through time se-
ries analysis (Yordanova 2015a). We applied the approach

to 20 textual instructions (cooking recipes, manuals, and ex-
periment instructions). The results showed that the approach
is able to identify causal relations in simple texts with short
sentences. We compared the approach to one based on gram-
matical patterns and discovered that the latter was able to de-
tect very low number of relations. We used the extracted re-
lations as a basis for building precondition-effect rules (Yor-
danova and Kirste 2016). In (Yordanova and Kirste 2016)
we were able to learn a causal model describing the activ-
ities from the carrots soup preparation dataset and to com-
pare it to a manually built model described in (Yordanova
and Kirste 2015). The results showed that our approach is
able to extract precondition-effect rules and to explain the
plans corresponding to the video logs from the dataset. They,
however, showed that the action probability of executing the
action described in the plan is very low given the model. It
also has to be mentioned, that the initial and goal state of the
model were manually defined.

In the future we will concentrate on optimising the textual
instructions by applying anaphora resolution techniques. We
will also investigate techniques for reducing the set of possi-
ble initial and goal states before the optimisation step. Fur-
thermore, we will investigate inverse reinforcement learning
methods for optimising the model structure from sparse ob-
servations. Finally, we plan to apply the approach to differ-
ent domains (such as physiotherapy and assistance of work-
ers) in order to test its applicability to various problems from
the domain of daily activities.

If successful, the proposed approach will reduce the need
of expert knowledge by replacing it with the domain knowl-
edge encoded in textual instructions. It, in turn, will reduce
the time and resources needed for developing computational
models of human behaviour for activity recognition. It will
also be the first attempt at actually applying CSSMs learned
from textual data to an activity recognition problem.
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