PRELIMINARY VERSION: DO NOT CITE

Goal Recognition with Noisy Observations

Yolanda E-Martin' and David E. Smith?
L Centre for Automation and Robotics, CSIC-UPM, 28500 Madrid, Spain
yolanda.e.martin @csic.es
2 Intelligent Systems Division. NASA Ames Research Center, Moffett Field, CA 94035-1000
david.smith@nasa.gov

Abstract

Goal recognition is an important technological capability for
applications that involve cooperation between agents. Many
goal recognition techniques allow the sequence of observa-
tions to be incomplete, but few consider the possibility of
noisy observations. In this paper, we describe a planning-
based goal recognition approach that deals with both missing
observations and probabilistic noise in the observations. To
do this, we first use a Bayesian network to infer action proba-
bilities based on the observation model and the current obser-
vation sequence. We then use this information to estimate the
expected cost of reaching the different possible goals. Com-
paring these costs to the a priori costs for the goals allows us
to infer a probability distribution over the possible goals.

Introduction

Goal recognition is an important technological capability for
applications that involve cooperation between agents. It may
be that one agent needs to monitor the activities of another
agent, attempt to assist the other agent, or simply avoid get-
ting in the way while performing its own duties. For all of
these cases the agent needs to be able to realize what the
other agent is doing. In the absence of full and timely com-
munication of plans and goals, goal and plan recognition be-
comes essential. Many goal recognition techniques allow the
sequence of observations to be incomplete, but few consider
the possibility of noisy observations. In practice, this is not
very realistic because actions may have varying chances of
being detected and correctly identified.

As an illustration of this problem, consider the ISS-CAD
problem (E-Martin, R-Moreno, and Smith 2015b), where a
free-flying robot is observing and documenting an astronaut
performing a task in the International Space Station (ISS).
Figure 1 shows a simple ISS-CAD problem, and Figure 2
a PDDL model. In particular, the problem consists of four
ISS modules, Harmony (H), Destiny (D), Columbus (C), and
Unity (U) between which an astronaut a can move to get and
replace different components. The goal is to replace a sensor
located in Unity.

In such a problem there might be different sources of un-
certainty in the robot observations because of different rea-
sons such as (1) occlusion: there is an obstacle between the
robot and the task being performed; (2) identification: some
actions may be hard to distinguish given the robot’s sen-

a
l Harmony }4—»{ Destiny

Figure 1: A simple ISS-CAD problem.

sors; (3) distraction: the robot is engaged in other tasks that
do not allow continuous observation of the astronaut. For
this reason, in this paper, we propose a planning-based goal
recognition approach that deals with both missing observa-
tions and probabilistic noise in the observations. We adopt
the same basic approach used in (E-Martin, R-Moreno,
and Smith 2015a), which: 1) uses a plan graph to esti-
mate costs for each possible goal given the current observa-
tion sequence, and 2) uses the Ramirez and Geffner frame-
work (2010) to estimate the probability of each possible goal
based on the difference between the cost of the best plan
for the goal given the observed actions, Cost(G|O), and the
cost of the best plan for the goal without the observed ac-
tions, Cost(G|O). The big difference here is that the ob-
servations only indirectly give us probabilities for actions in
the plan graph. We therefore first construct a Bayesian Net-
work (BN) to estimate these action probabilities, and then
use this probability information in the plan graph to com-
pute expected cost for each goal, given the observations.

In the next section we review Ramirez and Geffner’s tech-
nique for goal recognition through planning. We next de-
scribe an exhaustive but computationally impractical ap-
proach for adapting this technique to noisy observations.
We then describe our novel BN cost estimation approach.
Our experimental evaluation of the approach is not yet com-
plete, but we discuss some preliminary findings. Finally, we
present the conclusions and future work.

Goal Recognition Background

Ramirez and Geffner (2010) define a classical goal recog-
nition problem as a tuple T = (P, G, O, Pr) where P is a
planning domain and initial conditions, G is a set of pos-
sible goal sets or hypotheses, O is the observed action se-
quence O = 01, ...,0,, and Pr is a prior probability distri-
bution over the goal sets in G. The observation sequence O
may be incomplete, but is sequentially ordered. The solution
to a goal recognition problem is the probability distribution
over the goal sets G € G giving the relative likelihood of

(define (domain ISS-CAD)
(:requirements :strips :typing :action-costs
:types crew module system component tool

(:predicates (connected ?ml ?m2 - module)
(in ?c - component ?s - system ?m - module)
(replacement-in ?t - component ?m - module)
(taken ?t - component ?c - crew)
(at ?c - crew ?m - module))

:functions (total-cost)

raction move

:parameters (?c - crew ?ml ?m2 - module)
:precondition (and (at ?c ?ml) (connected ?ml ?m2)
:effect (and (not (at 2c 2ml)) (at ?c ?m2)

(increase (total-cost) 1))
:observability (0.9 0.2))

raction get

:parameters (2?0 - component ?c - crew ?m — module)
:precondition (and (at ?c ?m) (replacement-in 2?0 ?m))
:effect (and (taken ?o0 ?c) (increase (total-cost) 1))
:observability (0.9 0.2))

raction replace

:parameters (?o0 - component ?m - module ?c - crew)

:precondition (and (at ?c ?m) (in 2o ?s ?m) (taken 20 ?c))

:effect (and (replaced 20 ?s ?m ?c) (not (taken 2o ?c)
(increase (total-cost) 1))

:observability (0.9 0.2))

(define (problem ISS-CAD-p01)

(:domain ISS-CAD)
:objects a - crew HD U C - module sensor - component
(:init (connected H D) (connected D H) (connected H C)
connected C H) (connected D U) (connected U D)
connected C U) (connected U C) (taken sensor a)
in sensor U) (at a H) (= (total-cost) 0)
observable (move a H D) (1.0 0.0))
observable (move a D U) (0.8 0.1))
observable (replace sensor U a) (0.7 0.2)))
:goal (replaced sensor U a)
:metric minimize (total-cost)))

(
(
(
(
(
(

Figure 2: A fragment of a PDDL domain and a problem de-
scription for the ISS-CAD.

each goal set. Ramirez and Geffner estimate the probabil-
ity of each possible goal set based on how compatible the
observations are with plans for that goal set. In particular,
they characterize the likelihood of observing O when the
goal is G in terms of cost differences for achieving G under
two conditions: complying with the observations O, and not
complying with the observations O. Formally:

-5 A(G,0)]

Pr(0|G) = 11 CFa@oN)
where 5 is a positive constant and A(G, O) is the cost dif-
ference between achieving the goal with and without the ob-
servations:

A(G,0) = Cost(G|O) — Cost(G|O) ®)

The posterior probability Pr(G|O) of a goal G € G can,
therefore, be calculated by computing A(G, O) for each
possible goal. In particular, Pr(G|O) can be characterized
using Bayes Rule as:

Pr(G|O) = a Pr(0O|G) Pr(G) 3)

where « is a normalization constant.

The two costs necessary to compute A can be found by
optimally or suboptimally solving the two planning prob-
lems G|O and G|O.

Goal Recognition with Noisy Observations

Ramirez and Geffner’s later work (2011) introduces a
POMDP approach to solve goal recognition problems for an
agent having partially observable actions with uncertain out-
comes. This approach allows for missing observations and
actions that cannot be observed, but does not allow for noise
in the observations. In this work, we allow noisy observa-
tions, but we are still considering deterministic actions.

We model observation noise by the probability that the
action is observed when it happens (correct positive CP),
and the probability that the action is observed when it does
not happen (incorrect positive 1P). The syntax we use for
expressing observation noise for PDDL actions is:

(:observability (CP IP))

For the problem shown in Figure 1, observation noise for the
replace action is modeled as:

(:action replace

:parameters (?o0 - component ?m - module ?c - crew)

:precondition (and (at ?c ?m) (in 2?0 ?m) (taken 20 ?c)

:effect (and (replaced 2?0 ?m ?c) (not (taken 20 ?c)

(increase (total-cost) 1))

:observability (0.9 0.2))

However, the observability of an action often depends on
the parameters. For instance, consider an astronaut open-
ing a drawer to get a replacement component. In this case,
it would be more difficult for the robot to identify that
the astronaut is picking up a sensor because it is relatively
small compared to a filter. For this reason, we allow specific
grounded statements in the problem definition, overriding
the specified observation probabilities for an action in the
domain description:

(observable (replace sensor U a) (0.7 0.2)

In theory, we could use Ramirez and Geffner’s framework
to solve this goal recognition problem by considering all the
different sequences of actions consistent with the observa-
tions, and computing a probability distribution on the goal
sets for each such action sequence. Then, we could com-
pute the weighted sum of those distributions according to
the probability of the action sequence.

In the next subsections, we present the details of this ap-
proach, although it is computationally very expensive. Then,
we present a much different hybrid approach that uses a
Bayesian Network to infer action probabilities and a plan
graph to estimate expected cost.

Exhaustive Action Sequence Approach

As before, we assume a goal recognition problem 7' =
(P, G, 0, Pr), which includes a problem P, i.e., a planning
domain and initial conditions with observability informa-
tion, a set of possible goal sets G, a sequence of observa-
tions O, and a prior probability distribution over G. It is also
assumed that the sequence of observed actions O may be
incomplete, but is sequentially ordered.

The exhaustive solution to this problem uses optimal, or
suboptimal, planners to compute an accurate likelihood of
the possible goal sets. As mentioned above, for each goal set
G € G Ramirez and Geffner compute the difference between

Cost(G|0O) and Cost(G|O). Strictly speaking, both costs
are dependent on the noisy observations. However, in most
cases, Cost(G|O) = Cost(G). The two costs only differ
when the observation sequence consists exclusively of op-
timal landmarks (E-Martin, R-Moreno, and Smith 2015a).!
Therefore, Cost(G|O) can be approximated by solving the
planning problem once for G. However, Cost(G|O) is af-
fected by the observations, so it is necessary to compute this
for each possible action sequence consistent with the obser-
vations. Let S = s, ..., s, be the set of all possible action
sequences consistent with the observations. In this paper, we
make the assumption that only one action is possible at each
time step. This assumption is not strictly necessary, but sim-
plifies the presentation, and simplifies the computation for
the exhaustive approach. To enumerate S we need to take
into account all possible actions at each time step. Assume
that a sequence of actions s;_1 at time ¢ — 1 has probabil-
ity P(s;—1) given the observations, and that A1, ..., A,
are the possible actions at time ¢. Then, the probability of an
action sequence s; = s¢_1Ay; is given by:

P(st—1)CP(A¢j) TT CN(Agx)
Atk
k#j

P(sy—1)IN(Ag;) [T CN(Ayg)
P(st) = ?;k
J

if A¢; is observed
if @ is observed

P(s4—1)IN(Ag;)IP(Agg) [I CON(Agm) if Agg g2; is observed

tm
m#j,k

The set S is needed to compute Pr(G|O) because it con-
tains all the possible sequences potentially performed by the
agent and observed by the robot. This means that, the prob-
lem needs to be solved for each possible action sequence
s; € S. Therefore, Pr(G|O) would be:

Pr(G|O) = Y Pr(G|s;)Pr(s;|O) 4)

s; €S

where Pr(Gl|s;) is computed using Equations 1, 2, and 3
with O replaced by s; and the normalization constant « re-
placed by a normalization constant «; specific to s;, which
is computed as:

1

~ % Pr(Gls:)
Geg

&)

a;

The algorithm may be summarized as: for each (possibly
conjunctive) goal G € G:
1. Approximate Cost(G|O) =~ Cost(G) by solving the
planning problem.

2. For each possible action sequence s; € S

a. Compute Cost(G|s;) by solving the planning problem.
b. Compute A(G, s;) using Equation 2.
c. Compute Pr(s;|G) using Equation 1.
d. Compute Pr(G|s;) using Equation 3.

"Even when the observation sequence consists entirely of opti-

mal landmarks, Coost(G|O) and Cost(G) are usually quite close.

This is because the cost of the best suboptimal plan for a goal is
typically close to the cost of the optimal plan.

3. Compute Pr(G|O) using Equation 4.

This solution provides an accurate probability distribution
over the set of possible goals. However, it is computation-
ally expensive for large problems because of the explosion
in the number of action sequences consistent with the obser-
vations. To mitigate this problem, we could instead approx-
imate the problem by using FGR (E-Martin, R-Moreno, and
Smith 2015a), a goal recognition technique that avoids plan-
ning altogether by propagating cost in a plan graph. Nev-
ertheless, both approaches have a complexity of |G| x |S].
For this reason, in the next section we present a much dif-
ferent hybrid approach that avoids enumerating the possible
sequences of action .S.

Hybrid Approach

Our approximate solution still uses the Ramirez and Geffner
formulation (Equations 1, 2 and 3) to compute a probability
distribution over the goal sets G € G. However, we need to
find an approximate way of computing ACost (Equation 2)
that does not require enumerating all the action sequences
consistent with the observations. If we had probability infor-
mation for the actions in the plan graph, we could use this
to estimate the expected cost for Cost(G|O), and then use
this to compute the cost difference. However, just assessing
probability information for actions that are observed is not
enough. The reason is that an observation may have impli-
cations about other actions and propositions. For example, if
we observe an action with high probability, then there is high
probability that its preconditions are true, and elevated prob-
ability for actions that could produce those preconditions at
previous time steps. Conversely, the probability of mutually
exclusive actions would be reduced.

In the next subsection, we describe how we automatically
construct a Bayesian Network (BN) from the Plan Graph
for a problem, and use this BN to infer the probabilities
that actions have happened, given the current observation
sequence. Then, we briefly review how to propagate cost es-
timates in a plan graph. Finally, we present the algorithm
that uses these two techniques to compute C'ost(G|O) and,
therefore, Pr(G|O).

Estimating action probability

Plan graphs provide an efficient method of estimating the
reachability of propositions and actions at different times.
When actions are observed with certainty, this structure al-
lows ruling out other actions and propositions, and inferring
the presence of other actions and propositions. An example
of this is the work done by Jigui and Minghao (2007), who
developed a plan recognition framework that narrows the set
of possible goals by incrementally pruning a plan graph as
actions are observed. However, when observations are noisy,
this technique is no longer sufficient. Instead, we can use a
BN to infer the probability of propositions and actions in a
plan graph.

A plan graph can be translated into a BN by including
variables for each action and proposition, and connecting
them together according to their preconditions and effects.

The structure of the BN is given by the following nodes and
edges:

e A proposition variable x(for each proposition in the ini-
tial state. For simplicity, proposition variables that repre-
sent the initial state are given as true in the BN, (although
they could be assigned uncertain values if the initial state
were not fully known by the observer).

e An action variable A; for each action that appears in the
plan graph at time ¢, conditioned on all its preconditions
at t. Figure 3(a) shows an action variable A; with set of
preconditions {x14, Zat, . . ., Tnt)

e A noop variable noop-x; for each proposition x;, con-
ditioned on z; and on every other action that produces
or deletes x41. Figure 3(d) shows a noop variable for
a proposition z, a set P, of actions that can produce z
(producers), and a set D, of actions that can delete =
(deleters). The noop variable has a single outgoing arc to
x at the next time ¢ + 1.2

e A proposition variable x; for each proposition produced
at time ¢ by actions a;_1 Or a noop operator noop-x;_1,
conditioned on the producers and deleters of the proposi-
tion, and the noop operator, if it exists. Figure 3(b) shows
a proposition variable x; with producers { Py, ..., Py},
deleters { D14, ..., Dy}, and the noop, noop-z;_1.

e A mutex variable mutex-¢ at time ¢ conditioned on all ac-
tion variables a at t (noop operators not included). Mutex
variables are given as true in the BN for each time step in
the plan graph. Figure 3(c) shows a mutex variable where
there are three action variables A;, B;, and C} at time ¢.

e An observation variable obs-A; at time t for each action
A;, conditioned on that action. Observation variables are
given as true in the BN at the time step ¢ in the plan graph
where A is observed. Figure 3(e) shows an observation
variable for an action variable A;.

Figure 4 shows an example of the first few time steps
of the BN for the ISS-CAD problem. Black nodes repre-
sent evidence nodes that are known as true beforehand —
initial state propositions, mutex relationships, and observed
actions. Gray nodes represent those variables whose state is
initially unknown.

Each variable in the BN has an associated Conditional
Probability Table (CPT) that gives the distribution of the
variable for each combination of predecessor values. The
CPT for an action variable is taken to be:

e False: if any of its preconditions is false.

e Unknown: if all its preconditions are true. In this case, we
take the probability to be 1 divided by the total number of
possible actions at time ¢. That way, all the actions whose
preconditions are true at a given time step are considered
equally likely, in the absence of further information.

21t might seen that we could just model noop variables as or-
dinary actions and add mutex relationships between the noop and
these other actions. However, this is not enough. We also need to
force the noop to be true when all other actions that affect the vari-
able are false, which is why we need a more complex model of
noop operators.

Noop-T¢—1

Tt \ 131“1&‘A
H— 4, Py — %
7 Dll—l/

Tt :

Dy

(a) action variable (b) proposition variable

Ay By Gy Py, Dy,
N/ \ Y
mutex-t Xt —>= NOOP-T¢ — X¢41 A; — obs-4,;

(c) mutex variable (d) noop variable (e) observation variable
Figure 3: Graphical depiction of action, proposition, mutex,

noop, and observation variables in a BN.

atH-0

obs-MoveHC-0

obs-MoveHD-0

obs-MoveDU-1

Figure 4: An fragment of the Bayesian network for the ISS-
CAD problem.

Figure 5 shows the rule for the CPT of an action variable
A with set of preconditions {x1, z2, ..., %, }.

x
x;\ 0

T4 = pr(A)is
: / Vit‘ ifallz; =1
Ln

Figure 5: CPT rules for an action variable.

ifany z; =0

Table 1 illustrates the CPT of the action variable
(moveHC-0) in Figure 4 whose precondition is (atH-0).
When (atH-0) is true, the probability that (moveHC-0) is true
or false is equal to 0.5, since there are only two actions possi-
ble at this level of the plan graph. Otherwise, the probability
that (moveHC-0) is true is equal to 0, and the probability that
(moveHC-0) is false is equal to 1.

The CPT for a noop variable of a proposition is taken as:

e True: if the proposition is true in the previous level and all

Table 1: CPT of an action variable (moveHC-0).

atH-0 | Pr(moveHC-0=T) | Pr(moveHC-0=F)
T 0.5 0.5
F 0 1

other actions that affect the proposition are false.

e False: if the proposition is not true in the previous level or
there is another action that affects the proposition.

Figure 6 shows the rule for the CPT of a noop variable
noop-z for proposition = with set of producers P, and set of
deleters D,..

P, D

\

T — NOOP-Z = pr(noop-z) is { 2z =0orsome P, =1
0 if

lifr=1land B, =D, =0

or someD; = 1

Figure 6: CPT rules for a noop variable.

Table 2 illustrates the CPT of the noop variable (noop-
atH-0) in Figure 4 whose precondition is (atH-0). There are
two other actions that produce (atH-0), (MoveHC-0) and
(MoveHD-0), which must be considered in the CPT. In our
example, when (MoveHC-0) and (MoveHD-0) are false, and
(atH-0) is true, then (noop-atH-0) is true. Otherwise, (noop-
atH-0) is false.

Table 2: CPT of a noop variable (noop-atH-0).

MoveHC-0 | MoveHD-0 | atH-0 | Pr(noop-atH-0=T) | Pr(noop-atH-0=F)
T - - 0 1
- T - 0 1
F F T 1 0
F F F 0 1

The CPT for a proposition variable is taken to be:

e True: if any of the producers is true and all of the deleters
are false, or all the producers and deleters are false and
there is a noop.

e False: if any of the deleters is true and all of the producers
are false.

e Unknown: if both a producer and deleter are true. In this
case, we take the probability to be the ratio of producers
to the total number of producers and deleters. That way,
if a variable has many producers that are likely, but few
deleters that are likely, it will be considered more likely
than the opposite case.

Figure 7 shows the rule for the CPT of a proposition vari-
able x with set of producers {Pi, ..., P, } and set of pro-
ducers {Dy,...,D,}.

Table 3 illustrates the CPT of the proposition variable
(atD-2) in Figure 4, whose predecessors are (MoveHD-1),
(MoveDU-1), and (noop-atD-2). When (MoveHD-1) and
(MoveDU-1) are true, (atD-2) is unknown and, therefore,

noop-¢
Py .
1 ifany P, =1landno D; =1
: or
P all P, = D; = 0 and noop-z-i = 1
" x = pr(z)is
D17 (=) 0 ifany D, =1andno P, =1
' % if some P, = 1 and some D; = 1
D, Y v

Figure 7: CPT rules for a proposition variable.

has an equal probability of 0.5 of being true or false. This
is because the two actions are mutually exclusive. When
(MoveHD-1) is true and (MoveDU-1) is false, (atD-2) is
true with probability 1. This is because (atD-2) belongs to
(MoveHD-1) add effects. Conversely, when (MoveHD-1) is
false and (MoveDU-1) is true, (atD-2) is true with prob-
ability 0. This is because (atD-2) belongs to (MoveDU-1)
delete effects. Finally, when (MoveHD-1) and (MoveDU-1)
are false and (noop-atD-1) is true, (atD-2) is true with prob-
ability 1.

Table 3: CPT of the proposition variable (atD-2).

MoveHD-1 | MoveDU-1 | noop-atD-1 | Pr(atD-2=T) | Pr(atD-2=F)

T T 0.5 0.5
T F - 1 0
F T - 0 1
F F T 1 0
F F F 0 1

The CPT for a mutex variable among n actions
Ag; ... A, attime ¢ is defined as:

e True: if at most one A;; is true.
e False: if more than one A;; is true.

Figure 8 shows the rule for the CPT of a mutex variable
mutex-t for actions A;q, Ao, and A;s.

An . 0 if at mostone A,; =1
Ay — mutex-t = pr(mutex-t) is
A 1 if more than one A,; = 1

Figure 8: CPT rules for a mutex variable.

By setting all mutex variables to true in the BN, we pre-
vent more than one action at any given time step. This is
not a limitation for the hybrid approach, but it is for the ex-
haustive action sequence approach that we want to compare
against.

Table 4 illustrates the CPT of the mutex variable (mutex-
0) in Figure 4.

Finally, the CPT of an observation variable is generated
using the probability information given by the observable
statement in the problem definition. Figure 9 shows the rule
for the CPT of an observable variable obs-A for an action A.

Table 5 shows the CPT of the observation variable (obs-
MoveDU-1) in Figure 4, which is observed at time / with a

Table 4: CPT of a mutex variable (mutex-0).

MoveHC-0 | MoveHD-0 | Pr(mutex-0=T) | Pr(mutex-0=F)
T T 0 1
- F 1 0
F - 1 0

Correct positive if A=1
A —> obs-A = pr(obs-A) is {

Incorrect positive if A =0
Figure 9: CPT rules for an observation variable.
probability of 0.8 of being observed if true, and a probability

of 0.1 of being observed if false.

Table 5: CPT of an observation variable (obs-MoveDU-1).

MoveDU-1 | Pr(obs-MoveDU-1=T) | Pr(obs-MoveDU-1=F)
T 0.8 0.2
F 0.1 0.9

Once we generate the BN for the problem, we can query
the posterior probability of each action and proposition
given all evidence variables — that is, the actions in the ob-
served sequence. In our example, we know by intuition that
the probability of (atD-1) should be higher than the prob-
ability of (atH-1) and (atC-1); and that the probability of
(atU-2) should be higher than the probability of (atD-2) be-
cause actions (MoveHD-0) and (MoveDU-1) are observed
with probabilities 1 and 0.8 respectively. In particular, when
we query variables (atH-1), (atC-1), and (atD-1), we get the
following non-zero posterior probability:

Pr(atD-1=T | evidence) = 1
Pr(atD-2=T | evidence) = 0.015
Pr(atU-2=T | evidence) = 0.985

If, for instance, we considered the case where the robot
only observed action (MoveHD-0), propositions (atD-2) and
(atU-2) would have a 0.5 posterior probability of being true.
This is because there is not enough information or evidence
to infer the astronaut behavior, and, therefore, both locations
would have the same probability.

Cost estimation in a plan graph

The standard method of propagating cost information in a
plan graph is a technique that has been used in a number of
planning systems (e.g: (Do and Kambhampati 2002)), and
assumes independence among all preconditions of an action.
The computation of cost begins at level zero of a plan graph
and proceeds sequentially to higher levels. For level zero we
assume the cost for propositions is 0 because the initial state
is given. With these assumption, the propagation starts by
computing the cost of the actions at level zero. In general,
for an action a at level / with a set of preconditions P,, the
cost is approximated as:

cost(a) = cost(P.) = Z cost(zt) (6)

¢t €Pq

The next step is to calculate the cost of propositions. For
a proposition x at level /, achieved by the actions A4, at the
preceding level, the cost is calculated as:

Cost(z) = aglia)[cost(a) + Costa] ™)

where Cost, is the cost of applying the action a, and cost(a)
is the cost of achieving a, given by Equation 6.

Using these equations, a cost-plan graph is built until qui-
escence. On completion, each possible goal proposition has
an estimated cost of achievement. For each possible con-
junctive goal G € @, a relaxed plan is computed, giving
preference at each step of the regression to the producer ac-
tions (or Noops) having the lowest cost. The cost of this re-
laxed plan is then taken as Cost(G).

The nFGR algorithm

We can use the posterior probability values computed in
the BN to help infer the expected cost of achieving various
goals. To do this, we take into account the BN probabili-
ties of the actions in the propagation of cost in a plan graph.
The plan graph can, therefore, be used to approximate an
expected cost for each goal. In particular, we follow the pre-
viously described algorithm for propagating cost in a plan
graph. That is, the cost of an action is the cost of achieving
its preconditions. The cost of propositions is the minimum
cost among all the actions that achieve the proposition. How-
ever, it is possible that a costly action has a high probabil-
ity of being true given the observed action sequence. As a
consequence, the probability of propositions depend on the
probability of actions being true. For this reason, we make
use of the posterior probabilities pr given by the BN to infer
the expected cost of propositions and actions in a plan graph.
As before, for level zero we assume the cost for propositions
at this level is 0 because the initial state is given. The prop-
agation starts by computing the cost of the actions at level
Zero.

In general, the cost of an action is the sum of the costs
of achieving its preconditions. However, in the probabilis-
tic case, the cost of an action will only be the cost of those
preconditions that are not already established. We can, there-
fore, use the probabilities computed in the BN to temper the
costs of preconditions, based on how likely it is that they
have already been achieved. In this way, for a positive pre-
condition p, the cost is multiplied by 1 — pr(p), while for a
negative preconditions g, it is multiplied by pr(g). In gen-
eral, for an action a at level [with a set of positive pre-
conditions P,, and a set of negative preconditions N, the
expected cost of a is approximated as:

eCost(a) = Z eCost(p){1 —pr(p)} + Z eCost(p)pr(p)
PEPa PENa
®)

The next step is to calculate the cost of propositions. For
a proposition x at level [, achieved by the actions .4, at the
preceding level, the expected cost of x is approximated as:

eCost(x) = cost(z) H (1 —pr(a)))

a€A,

where cost(x) is given by Equation 6, and the product of all
producers of x is the probability that none of the producers
has been performed. In other words, we do not have to pay
any cost for those actions that have been performed. It is
only those actions that are not done yet that influence the
cost of achieving z, and it is the cost times 1 — pr(a).

Taking these decision rules into consideration, we can
build a plan graph and propagate expected cost. The con-
struction process finishes when two consecutive proposition
layers are identical and there is quiescence in cost for all
propositions and actions in the plan graph. On completion,
each possible goal proposition has an expected cost of being
achieved.

For each possible conjunctive goal G € G, we then con-
struct a relaxed plan 7, giving preference at each step of
the regression to the producer actions (or Noops) having the
lowest expected cost. The expected cost of G|O is then taken
to be the cost of this relaxed plan 7 plus the expected cost
of other actions in the plan graph that are not present in the
relaxed plan 7 but have non-zero probability. The high-level
nFGR algorithm used to solve a goal recognition problem
for a particular sequence of observations is summarized in
the following steps:

1. Build a plan graph for the problem P (domain plus initial
conditions) and propagate cost through this plan graph.

2. For each (possibly conjunctive) goal G € G estimate the
Cost(G) from a relaxed plan.

3. Build a BN, using the technique described above.

4. For the particular observation sequence 01, ..., 0; set the
corresponding observation variables in the BN and use it
to estimate posterior probability for actions and proposi-
tions.

5. Using the probabilities from the BN, compute expected
costs for all possible goals using the probabilistic plan
graph.

6. For each (possibly conjunctive) goal G € G:

a. Estimate the Cost(G|O) from a relaxed plan.

b. Compute A(G, O) using Equation 2, and compute the
probability Pr(G|O) for the goal given the observa-
tions using Equation 1.

7. For each (possibly conjunctive) goal G € G compute
Pr(O|G) as in Equation 3.

When used for real-time goal recognition, the plan graph
and the BN are built once. Steps 4 to 7 are repeated every
time an action is observed. In other words, every time an
observation comes in, the corresponding observation vari-
able is set to true in the BN, and the posterior probability for
each action and proposition is recomputed. Then, the cost
propagation is done again in the plan graph to compute the
expected cost of each possible goal.

Discussion

We have developed an implementation of the Exhaustive Ac-
tion Sequences approach described earlier in this paper. Un-

fortunately this approach requires large amounts of compu-
tation time to get results, due to the combinatorial explosion
in the number of possible action sequences that need to be
considered. We attempted to run this approach using both
the optimal planner HSP} (Haslum and Geffner 2000) and
our heuristic approximation FGR (E-Martin, R-Moreno, and
Smith 2015a). HSP*JZ runs out of time for most of the prob-
lems with a time limit of 3600 seconds. FGR runs out of
memory or runs out of time with a time limit of 1800 sec-
onds. Clearly these times are much too high to allow use of
this technique for real-time goal recognition. However, we
would nevertheless like to obtain results with this approach
(however long it takes) to compare the accuracy of the pred-
ications with our hybrid nFGR technique.

For the hybrid approach, nFGR, our initial implementa-
tion used an open source Java BN package. This package
turned out to have efficiency problems for the large networks
we create. In addition, mutex relationships and noop opera-
tions tend to have large but very sparse CP tables. The BN
package performs poorly with these large tables. As a result,
we are currently adapting our implementation to use a more
powerful commercial BN package that allows us to specify
sparse CP tables using equations. We believe that this pack-
age will perform much better, but have not yet completed
implementation and testing.

Related work

As previously mentioned, Ramirez and Geffner (2011) intro-
duce a POMDP approach to solve goal recognition problems
for an agent having partially observable actions with uncer-
tain outcomes. This approach allows for missing observa-
tions and actions that cannot be observed, but does not allow
for noise in the observations. More recent work by Keren,
Gal, and Karpas (2016) uses a model of sensing where per-
formance of an action nondeterministically results in one of
a set of possible sensory outcomes (tokens) that may or may
not be unique to the action. This is somewhat different from
the model we use here, where we assume true-positive and
false-positive probabilities of observation for each action.
Given a probability distribution over the sensor tokens for
each action, it appears possible to compile the sensor token
model into our model, but it is less clear whether it is possi-
ble to go the other direction.

Bayesian networks have become a popular representa-
tion to perform inference based on observed actions and a
knowledge-based model. In particular, Charniak and Gold-
man (1993) developed a framework to solve plan recogni-
tion problems, which consists of a knowledge-base of facts
about the world expressed in a first-order language and rules
for using that knowledge-base to build a BN. The network
is then evaluated to find the plans consistent with the ob-
served sequence with the highest probability. Albrecht and
colleagues (1997) implemented online goal recognition for
adventure games using Dynamic Bayesian Networks (DBN)
(which allows incorporating temporal reasoning into the
BN) to recognize possible goals and to predict future player
actions. Horvitz and Paek (1999) developed an approach that
uses BN to recognize goals in an automated conversation

system. Kaminka and colleagues (2002) developed an ap-
proach to multiagent plan recognition using DBN to perform
monitoring in distributed systems. Bui (2003) and Bui and
colleagues (2002) used Hierarchical Hidden-Markov Mod-
els, a specific type of DBN, for hierarchical goal recogni-
tion, which is the recognition of the current agents top-level
goal and subgoals. Saria and Mahadevan (2004) extended
the work by Bui (2003) to multiagent plan recognition. Char-
niak and Goldman (2009) developed a Bayesian approach to
plan recognition that evaluates abductive story understand-
ing systems.

For most of these plan recognition and goal recognition
approaches, the BN is built in a domain specific fashion.
The one exception is the work done by Charniak and Gold-
man (1993). They provide a set of rules, which define the
preconditions for adding nodes to the network, with infor-
mation on actions, plans, and observed objects. The network
grows with every new observation and by creating new hy-
potheses. The result is a posterior probability distribution
over a set of possible plans. This technique is quite differ-
ent from the approach we use, where the BN is constructed
directly from the planning domain model. In addition to this,
we do not use the BN to directly infer the probability of the
possible goals. Instead, we use the BN to infer action and
proposition probabilities, which are then used to estimate ex-
pected cost for each possible goal using a plan graph. This
cost information is then used with the Ramirez and Geffner
approach to infer a probability distribution over the possible
goals.

Conclusions and future work

This paper presented a heuristic technique for goal recogni-
tion with noisy observations. It combines the construction of
a plan graph with cost estimates (E-Martin, R-Moreno, and
Smith 2015a) and Bayesian networks (Pearl 1988) to com-
pute likelihood of the possible goals. In particular, we use
the posterior probability values computed in the BN to help
infer the expected cost of achieving various goals. Our ex-
perimental evaluations are still ongoing, so it is early to draw
significant conclusions about the accuracy and efficiency of
this work. However, preliminary results show that the Ex-
haustive Action Sequences approach is impractical for real-
time goal recognition purposes.

In addition to finishing our experimental evaluation, there
is another issue that we would like to explore. The sim-
ple cost propagation in a plan graph is a technique that as-
sumes independence between propositions and between ac-
tions. Therefore, the cost estimates computed in this way
are often inaccurate because they do not consider interac-
tion between different actions and subgoals. In our earlier
work on FGR (E-Martin, R-Moreno, and Smith 2015a), we
addressed this issue for goal recognition with certain obser-
vations. However, noisy observations lead to probabilities on
actions and propositions in the plan graph, which compli-
cates the computation of interaction estimates. As a result,
we have ignored interaction computation in this work. A
natural extension is to consider interaction during cost prop-
agation along with the probabilistic information given by the
BN. In this way, we could compute more accurate estimates

of the cost of a goal, and the expected cost of a goal given
the observations.

Acknowledgments

We thank Mark Peot for discussions on the encoding of a
plan graph in a Bayesian Network and Christian Plaunt for
his help running preliminary experiments. This work is par-
tially supported by the NASA Safe Autonomous Systems
Operations (SASO) project.

References
Albrecht, D. W.; Zukerman, I.; Nicholson, A. E.; and Bud,
A. 1997. Towards a Bayesian model for keyhole plan recog-
nition in large domains. In 6th Intl. Conf. on User Modeling.
Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recogni-
tion in abstract hidden Markov model. JAIR 17(4):51-99.
Bui, H. 2003. A general model for on-line probabilistic plan
recognition. In IJCAI-03.
Charniak, E., and Goldman, R. P. 1993. A Bayesian model
of plan recognition. A1J 64(1):53-79.
Do, M., and Kambhampati, S. 2002. Planning graph-based
heuristics for cost-sensitive temporal planning. In AIPS-02.
E-Martin, Y.; R-Moreno, M. D.; and Smith, D. E. 2015a.
A fast goal recognition technique based on Interaction esti-
mates. In IJCAI-15.
E-Martin, Y.; R-Moreno, M. D.; and Smith, D. E. 2015b.
Practical goal recognition for ISS Crew Activities. In
IWPSS-15.
Geib, C. W., and Goldman, R. P. 2009. A probabilistic
plan recognition algorithm based on plan tree grammar. AlJ
84(1-2):57-112.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS-00.
Horvitz, E., and Paek, T. 1999. A computational architec-
ture for conversation. 7th International Conference on User
Modeling.
Jigui, S., and Minghao, Y. 2007. Recognizing the agent’s
goals incrementally: planning graph as a basis. Frontiers of
Computer Science in China 1(1):26-36.
Kaminka, G. A.; Pynadath, D. V.; and Tambe, M. 2002.
Monitoring teams by overhearing: A multi-agent plan recog-
nition approach. JAIR 17:83-135.
Keren, S.; Gal, A.; and Karpas, E. 2016. Privacy preserving
plans in partially observable environments. In IJCAI-16.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Ramirez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In AAAI-10.
Ramirez, M., and Geffner, H. 2011. Goal recognition over
POMDPs. In ICAPS-11.
Saria, S., and Mahadevan, S. 2004. Probabilistic plan recog-
nition in multiagent systems. In ICAPS-04.

