
Partial Observability in Grammar Based Plan Recognition.

Christopher W. Geib
College of Computing and Informatics

Drexel University
3141 Chestnut St.,

Philadelphia, PA 19104, USA
cwgeib@drexel.edu

Abstract

Prior work on viewing plan recognition as parsing of gram-
mars has assumed completely observable actions. This pa-
per provides an algorithm to rewrite plan grammars to al-
low for recognizing partially observable actions. For the
ELEXIR (Geib 2009) system, the impact of this rewriting on
plan recognition runtime is shown to be limited to those plans
that actually use the partially observable actions.

Introduction
Like human speech processing that requires both 1) the con-
struction syntactic tokens from the raw signal and 2) parsing
of these tokens into larger sentences, recognizing the com-
plex plan structures being followed by intelligent agents re-
quires two di↵erent processing stages. First we must convert
raw, sensor reports of observed activities into a stream of dis-
crete action tokens representing the agents movements. This
first process, usually called activity recognition, is well ad-
dressed by a number of well known probabilistic reasoning
methods like HMMs, CRFs, and POMDPs(Hoogs and Per-
era 2008; Liao, Fox, and Kautz 2005; Vail and Veloso 2008).
However, in addition, a second process, usually called plan
recognition, must assemble such activity tokens to produce
complex, hierarchical plan structures that organize the com-
pleted parts of the plan that support higher level goals and
even make predictions about future supporting activities.

While many of the algorithms for activity recognition
have been shown to deal well with partially observable
domains, the algorithms for plan recognition have not.
For example, the Engine for LEXicalized Intent Recog-
nition (ELEXIR) system (Geib 2009; Geib and Goldman
2011) views plan recognition as parsing of a stream of ob-
served action tokens (executed by the agent) given a proba-
bilistic plan grammar defined. Viewing plan recognition as
probabilistic parsing has a number of advantages enumer-
ated in prior work (Vilain 1990; Geib and Steedman 2007;
Geib 2009; Geib and Goldman 2011). However, even given
these advantages, the current work on ELEXIR has a sig-
nificant limitation, it assumes that all of the actions in the
domain can be observed with certainty. That is, none of the

Copyright c� 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

actions can be performed and not observed or can be incor-
rectly identified when they have been performed. This paper
begins the process of removing this assumption.

ELEXIR’s foundation in parsing formal grammars pro-
vides a simple method to address this problem. The gram-
mar that captures the plan library can be rewritten to make
the observation of the desired actions in the grammar op-
tional, and the probability model of the grammar is changed
to reflect the possibility of the missing observation of the
action. No changes are required to the ELEXIR algorithm
to deal with partially observable domains. Thus, our ap-
proach has no impact on the completeness or correctness of
the plan recognition algorithm itself. However, the required
rewriting of the plan grammar can impact system runtime.

The rest of this paper is structured as follows. First it
will provide a brief overview of plan recognition as parsing
in the form of ELEXIR, followed by a discussion of prior
work. Then it will then discuss rewriting grammars to ad-
dress partially observable actions and the impact of rewrit-
ing on system runtime.

Plan Recognition as Parsing
Vilain (Vilain 1991) suggested that plan recognition could
be viewed as a kind of parsing like that performed to under-
stand natural languages. Taking this suggestion seriously,
the ELEXIR system (Geib 2009; Geib and Goldman 2011)
represents plans using Combinatory Categorial Grammars
(CCG) (Steedman 2000). In such a grammar, each termi-
nal of the grammar, represents an observable action in the
domain, and is associated with a number of categories that
capture the structure of the possible plans in which it can be
used. The set of all categories, C, is defined recursively:

Atomic categories : A finite set of basic action categories.
C = {A, B, ...}. Note that for the rest of this paper all
atomic categories will be denoted using capital letters.

Complex categories : 8Z 2 C, and non-empty set
{W, X, ...} ⇢ C then Z\{W, X, ...} 2 C and Z/{W, X, ...} 2 C.

Complex categories represent functions that take a set of
arguments (the categories to the right of a slash, {W, X, ...})
and produce a result (the category to the left of the slash,
Z). The direction of the slash indicates where the function
should observe its arguments. Rightward slash arguments

PRELIMINARY VERSION: DO NOT CITE

must be observed after the action the category is assigned
to, and leftward slash arguments must be observed before.

In addition to a lexicon that assigns categories to terminals
of the grammar, ELEXIR uses three combinators (Curry
1977) defined over pairs of categories, to combine CCG cat-
egories into higher level plan structures:

rightward application: X/↵ [{Y}, Y) X/↵
leftward application: Y, X\↵ [{Y}) X\↵
rightward composition: X/↵ [{Y}, Y/�) X/↵ [�

where X and Y are categories, and ↵ and � are possi-
bly empty sets of categories. To see how CCGs per-
form plan recognition, consider the following simple exam-
ple. We can encode the fact that the sequence of actions:
[actA, actB, actC] is a valid plan to achieve goal G as:
CCG: 1

actA :={ A }
actB :={ ((G)/{C})\{A} }
actC :={ C }

where A,C and G are atomic categories.
The optional parentheses highlights the left associative

nature of complex categories. Note a lexicon can assign
multiple categories to an action. However, within any sin-
gle parse an action can only be assigned a single category.
To see how a lexicon and combinators parse observations
into high level plans, consider the derivation in Figure that
parses the observation sequence: [actA, actB, actC] using
CCG: 1. Each observation is incrementally assigned one

actA actB actC
A ((G)/{C})\{A} C

<
(G)/{C}

>
G

Figure 1: Parsing Observations with CCG categories

of its categories from the lexicon. Combinators (rightward
and leftward application in this case) then combine the cate-
gories.

We define an explanation of a sequence of observations as
an ordered sequence of (possibly complex) categories that
result from the ELEXIR parsing algorithm. As each distinct
parse of the observations represents a distinct set of cate-
gories, or methods for combining the categories, they repre-
sent di↵erent “explanations” for the observed actions.

For any category we define the root result of the category.
In the case of atomic categories it is the category itself. For
complex categories it is the left-most, inner, atomic result
category. We define a function root that returns the root re-
sult of any category. For example:

G = root(((G)/{C})\{A})

Further, we will call an action an anchor for a category if the
specified category is the root result of one of the categories
in the action’s definition. For example in CCG: 1, actB is an
anchor for category G and actA is an anchor for A.

It will be helpful to be able to write expressions with cat-
egory variables. A vertical bar will be used when we don’t
care about the direction of a category’s slash operator. Bold,
subscripted lowercase “v”s will be used as variables for sin-
gle atomic categories. So v1|{B} matches all complex cate-
gories that have only a single atomic category B argument
on either side. (eg. A/{B} or C\{B} but not (G\{A})\{B}).

Further, bold, subscripted, lowercase “v”s with a right ar-
row over them will be used as variables for possibly com-
plete, complex category fragments (excluding their initial
and final slashes). For example, G| �!v1|{A}will match any cat-
egory with at least two arguments whose root result is G and
whose first argument is A. This would include (G\{B})\{A}
as well as ((G/{B})/{C})/{A}. The expression �!v1|{B} would
match any complex category whose first argument is B.

The Probability Model
ELEXIR defines the probability of a goal as:
Definition 0.1

P(goal|obs) =
P
{expi |goal2expi} P(expi ^ obs)
Pn

j=0 P(exp j ^ obs)

Where P(expi ^ obs) is the probability of explanation expi
and the observations. Thus, the conditional probability for
any particular goal is the sum of the probability mass asso-
ciated with those explanations that contain it divided by the
probability mass for all the explanations of the observations.

ELEXIR defines the probability of an explanation, exp,
with m categories, that explains n observations, �1...�n, as:
Definition 0.2

P(exp^ {�1...�n}) =
mY

i=1

P(root(cexp,i))
nY

j=1

P(cinitexp, j|� j)K

where cinitexp, j represents the initial category assigned in ex-
planation exp to observation � j, and root(cexp,i) represents
the root result category of the ith category in the explanation
and K is a normalizing constant.

Intuitively, the first term captures the prior probability of
the agent having the root goals present in the explanation.
That is, the root results of the categories in the explanation
are the set of goals the agent is currently pursuing, and they
will not be combined into some larger goal. The second term
captures the probability that each observation is assigned its
initial category given the set of possible categories the lexi-
con allows it to have. Note that this means that any ELEXIR
lexicon must specify a probability distribution over the pos-
sible categories that an observation can be assigned.

Prior work (Geib and Goldman 2011) provides more de-
tail the system and we direct the reader there for more de-
tailed discussion of it

Related Work
Kautz’ foundational, graph covering based work on plan
recognition (Kautz 1991), in fact did not assume perfect ob-
servations, but instead fit the best vertex cover to the plan
graph. However, it was unable to address a number of issues

that ELEXIR does address including multiple interleaved
goals. Other similar early work using logic based reasoning
algorithms (Carberry 1990; Litman 1986) did formalize the
inference necessary for e�cient plan recognition. However,
addressing partially observable domains was not attempted.

As we have already noted, recent work on probabilis-
tic activity recognition using HMMs and CRFs (Hoogs and
Perera 2008; Liao, Fox, and Kautz 2005; Vail and Veloso
2008) is actually addressing a di↵erent problem than the
plan recognition problem. These systems are looking for
a single label for a sequence of observations. The ob-
ject of plan recognition is to unite a number of such labels
into a structured, higher-level plan. Similarly, Ramirez and
Ge↵ner (Ramirez and Ge↵ner 2011) have proposed using
POMDPs that could address partially observable actions for
plan recognition. However, like the HMMs and CRFs, in
their work they are attempting to infer a single high level
goal that is the objective of an agent specified by a POMDP
rather than the complex plan structures inferred in this work.

The work of Bui (Bui, Venkatesh, and West 2002)
presents an interesting alternative to this work in that Hi-
erarchical Hidden Markov Models should be able to address
partially observable domains, and capture the hierarchy of
plan structure. However, this prior work has di�culty deal-
ing with multiple interleaved plans, an issue that is already
addressed by ELEXIR. Further, the focus of this work is on
extending grammar based methods of plan recognition.

ELEXIR follows the early work of Vilain (Vilain 1990)
on plan recognition as parsing. However this early work
does not actually present an algorithm or implemented sys-
tem for plan recognition. Pynadath and Wellman (Pynadath
and Wellman 2000) do formalize plan recognition based on
probabilistic context free grammars (PCFGs). However they
do not view plan recognition as a parsing problem. Instead,
they use the structure of plans captured in a PCFG to build
a fixed Dynamic Bayes Net (DBN), and use the resulting
DBN to compute a distribution over the space of possible
plans that could be under execution.

There are other recent pieces of work, that take a
least commitment approach to plan recognition (Avrahami-
Zilberbrand and Kaminka 2005) or attempt to bound the
probabilities for gramatical methods (Kabanza et al. 2013)
that could be modified to address partial observability. How-
ever, since this work is also based on recognizing a library
of plans, to be complete, they would both be forced to do the
same kind of plan rewriting we have described here. Thus,
this work should really be seen as a opportunity for further
application of these ideas.

Geib (Geib and Goldman 2005) has also attempted to ad-
dress partial observability in a grammar based formalism,
however, they addressed the problem by modifying the pars-
ing algorithm to hypothesize the execution of all of actions
that could possibly be executed at each time step. This is
in addition to maintaining and extending the set of all of the
hypothesis that are consistent with the action that is actually
observed next in the series of observations. The additional
computational cost of hypothesizing all of these unobserved
actions makes this approach impractical for all but the sim-
plest domains. Our approach makes no such changes to the

parsing algorithm. The process of plan recognition remains
driven solely by the the observed actions and therefore re-
mains much more e�cient.

Making an Action Partially Observable
The use of formal grammars in ELEXIR gives us a method
for dealing with partial observability. Inspired by epsilon
removal from grammars (Hopcroft and Ullman 1979), we
can rewrite the grammar to make actions optional. For this
discussion, we will define the yield of a particular ELEXIR
plan lexicon, as the set of all sequences of observables that
can be parsed to produce a single atomic category using the
lexicon. Thus each element of the yield of a plan lexicon is a
sequence of observables for a single plan within the lexicon.

Suppose we want to make actB partially observable. We
must create a new grammar whose yields includes all the
sequences in our initial grammar, and all of the sequences
from the first grammar that contain actB with actB missing.
Thus if [actA, actB, actC] is in the yield of the initial gram-
mar, our new grammar should also accept [actA, actC]. To
do this we add categories to the lexicon for specific actions.

However extending the yield of the grammar is not su�-
cient. We must also change the probabilities associated with
the grammar in order to compute the correct probabilities.
Recall that each lexicon keeps a probability distribution over
the set of categories that an action can be assigned during a
parse. If we add categories to an action’s definition then we
must also change this probability distribution to reflect how
likely it is that the new category is the one chosen for the
action. We will discuss these two changes in order.

Extending the Grammar’s Yield
Extending the yield of the grammar to account for partially
observable actions is accomplished by adding new cate-
gories to specific entries in the lexicon. Suppose we want
to make an action actX := {cX

1 , ...c
X
n } partially observable.

To build the new lexicon, we start from a complete copy of
the original lexicon, and apply the following two rules.

1. For all actions in the lexicon actY := {cY
1 , ...c

Y
m} such that

actX , actY . If 9 A 2 C and indicies i and j such that,

(a) A is an atomic category, and
(b) A is an argument of cY

i , and

(c) cX
J = A|�!v1, then define

cnew =

8>>>>>>><
>>>>>>>:

�!v2/�!v1/�!v3 if cY
i =
�!v2/{A}/�!v3,�!v2/�!v1\�!v3 if cY

i =
�!v2/{A}\�!v3,�!v2\�!v1/�!v3 if cY

i =
�!v2\{A}/�!v3,�!v2\�!v1\�!v3 if cY

i =
�!v2\{A}\�!v3.

and add cnew to actY’s possible categories in the lexicon.

2. For every category cX
i =
�!v1|{v2}, if 9 G 2 C such that,

(a) G = root(cX
i), and

(b) G does not occur as an argument to any other category
in the lexicon, then

For each action actY := {cY
1 , ...c

Y
m} such that actY , actX,

For each cY
j such that v2 = root(cY

j)

cnew =

8>>>><
>>>>:

�!v1/�!v3 if cY
j = v2/

�!v3
�!v1\�!v3 if cY

j = v2\�!v3
�!v1 if cY

j = v2.

and add cnew to actY’s possible categories in the lexicon.
We will provide an example of the use of these rules after
discussing the changes to the probabilities, but some discus-
sion of these rules will help with understanding them. First,
note that neither of these rules changes the entry in the lexi-
con for actX. This is necessary to maintain the yield of the
grammar for all of the cases in which the action is observed.

Rule one replaces, in every category of the grammar that
makes use of it, the causal structure normally provided by
the categories of the partially observable action. For exam-
ple, suppose actX := {((A/{B})\{C}} and we want to make it
partially observable. Rule one creates new categories that re-
place all of the occurrences of A in the lexicon with the struc-
ture required for an unobserved instance of actX to achieve
A. In this case, the rule would replace instances of A with
leftward looking C and rightward looking B arguments.

Note rule one preserves the directionality of the slashes
of the original category structure with the definition of cnew.
This is why there are four cases in its definition. These four
cases guarantee that the plan’s ordering constraints, encoded
in the original grammar, are not violated in the new lexicon.

As a final note about rule one, this rule is formulated as
if each atomic category can occur only a single time in any
category definition. However nothing guarantees this and
we must address this limitation. Rule one must be invoked
within a loop to address the addition of multiple possible
cnew categories. Consider making action actX partially ob-
servable and suppose a category A that is a root result of one
of its categories, cX

i , occurs n times as an argument in an-
other category, cY

j , in the definition of action actY . For com-
pleteness the new grammar must consider all of the possible
permutations of actX being observed and not in any instance
of cY

j . This requires the adding to actY’s definition of 2n � 1
categories to capture all of the possible non-empty instances
of A being accomplished by an execution of actX and be-
ing observed or not. We will discuss the impact of this on
runtime shortly.

Rule number two addresses the possibility that the action
to be made partially observable, actX, is the anchor for a
category, G, that never occurs as an argument in another cat-
egory. E↵ectively such an action would be the anchor for
what we might think of as a “top level goal” of the agent. If
this is the case, to make the action partially observable we
have to provide another anchor for the root result in cases
where actX is performed but not observed.

Rule two does this by selecting the first argument of the
G anchored category, A, and elevating all of the actions that
achieve this category to be anchors for G. It does this by
constructing new categories that achieve G and adding them
to the actions’ definitions. Note that it must do this for all
of the actions that can achieve A otherwise the grammar will

loose elements of the yield where an unobserved execution
of actX could have resulted in G.

Modifying the Grammar’s Probabilities
As we have already discussed, ELEXIR action definitions
specify a probability distribution over the categories that
each action can initially take on. However, in both of the
yield extending rules above a source category is extended to
create a new category that is then added to an action’s def-
inition. The probability distribution for this action must be
changed to accurately account for the new categories. Mak-
ing an action, actX, partially observable will depend on hav-
ing a false negative rate, rX for its observation.

For rule number one, the intuition is to allocate some of
the probability mass from the source category to the new
category on the basis of the false negative rate. If the proba-
bility of cY

j in the initial grammar is PY
j and cnew is a category

derived from cY
j in the process of making actX partially ob-

servable using rule one, with a false negative rate of rX , then
in the new lexicon we change the probability of cY

j to be
PY

j (1� rX) and define the probability of cnew as PY
j rX . This is

just the original probability of the category times the proba-
bility that actX is going to be executed and not observed.

However, as we have pointed out, cY
j could have multiple

instances of a category A as an argument, and each could be
achieved using unobserved executions of actX. Therefore
we define the probability of a new category more generally
as:

Pcnew =

8>>>><
>>>>:

PY
j rX if n = 1

PY
j (rk

X � rk+1
X)/
⇣

n
k

⌘
if n > 1and k < n

PY
j rn

X if n > 1and n = k.

Where n is the number of instances of A in cY
j , and k is the

number of these instances in cnew that will be accounted for
by unobserved instances of actX.

The second line of this definition requires explanation.
The probability mass for all of the categories that result from
modifying cY

j (including itself) must sum to PY
j . We also

know that the probability mass associated with all of the new
categories that have n or more unobserved actions must sum
to PY

j (rX)n. We therefore know the sum of the probability
mass of the new categories that have exactly k < n unob-
served actions must sum to PY

j ((rX)k � (rY)k+1) which is the
numerator of the second case. We also know there are

⇣
n
k

⌘

categories that have exactly k unobserved actions that this
probability mass must be divided over. Having no other in-
formation about the relative likelihood of the new categories,
we distribute the mass over the

⇣
n
k

⌘
categories uniformly.

In the case of the categories that are added by the second
rule, we are again adding a category that is a modification of
an existing category. This means that again it makes sense to
divide the probability mass of the source category in order
to assign probability mass to the new category.

Remember that, in rule two, the source category’s root
result is A. In the initial grammar, with some likelihood,
Pj,Y,X , any instance of A, produced by the source category,

could play the role of being the first argument for cX
i . Let

PY
j be the probability assigned to the source category in the

initial grammar, we know Pj,Y,X < PY
i because this is a subset

of all of the instances of the source category. Thus, in the
new grammar we would like to assign the probability (PY

j �
Pj,Y,X)+Pj,Y,X(1� rX) to the source category and Pj,Y,X(rX) to
the new category. This correctly captures the intuition that
only the percentage of instances of the source category that
would have been used in conjunction with an instance of the
unobserved action should be e↵ected by this change.

However, there is no way to determine Pj,Y,X in gen-
eral. It is not given in the grammar and cannot be recon-
structed from the probabilities in it. Therefore, again as-
suming uniformity, we will split the probability mass giv-
ing half to the use for the new category and half for the
source category. Thus, in the new grammar, we define
PY

j = (0.5PY
j) + 0.5PY

j (1 � rX) and Pcnew = 0.5PY
j rX .

Note the two uses of a uniform distribution in this dis-
cussion are an initial approximation. There are a number of
more complex possibilities, including conditioning on state
or the parse. We also believe these distributions are learnable
from real world data, however these more complex models
and questions we leave as an area for future work.

Example
Consider CCG: 2 which captures part of a computer network
security domain. This domain has two primary goals: data
theft (DT) and denial of service (DOS). The following ex-
ample, will show the results of rewriting of CCG: 2 making
two di↵erent actions partially observable. We will show the
probability distribution over the categories that is required
by the lexicon as a sequence of reals after the category defi-
nition of the action.

CCG: 2

portscan :={ S }[1.0]
remote2loc :={ (((DT/{DX})/{C})/{U2R})\{S } }[1.0]

usr2root :={ U2R }[1.0]
consolidate :={ C }[1.0]

dataex :={ DX }[1.0]
syn f lood :={ (DOS)\{S } }[1.0]

Making the action usr2root partially observable with a
false negative rate of 0.25 results in the grammar shown in
CCG: 3. Only rule number one is applied in this case be-
cause the action in question is not the anchor of a top level
category. Note however, this does result in the addition of
a category to the definition of action remote2loc and the
changing of the probability distribution over its categories.

Next, we again apply the algorithms making the action
syn f lood partially observable with a false negative rate of
0.25. This results in CCG: 4. Rule two is applied here be-
cause syn f lood is the anchor for a top level category DOS .
Therefore, we add a new category to action portscan, mak-
ing it a new anchor for DOS when syn f lood is not observed,
and modifying the distribution over its categories.

CCG: 3

portscan :={ S }[1.0]
remote2loc :={ (((DT/{DX})/{C})/{U2R})\{S },

{ ((DT/{DX})/{C})\{S } }[0.75, 0.25]
usr2root :={ U2R }[1.0]

consolidate :={ C }[1.0]
dataex :={ DX }[1.0]

syn f lood :={ (DOS)\{S } }[1.0]

Since the rewriting of grammars will be done o✏ine, be-
fore plan recognition, it is not necessary that it be an e�cient
process, and therefore we will not discuss its complexity.

CCG: 4

portscan :={ S ,DOS }[0.875, 0.125]
remote2loc :={ (((DT/{DX})/{C})/{U2R})\{S },

{ ((DT/{DX})/{C})\{S } }[0.75, 0.25]
usr2root :={ U2R }[1.0]

consolidate :={ C }[1.0]
dataex :={ DX }[1.0]

syn f lood :={ (DOS)\{S } }[1.0]

Impact and Evaluation
To understand the impact grammar rewriting has on runtime,
it will be helpful to consider the impact it has on the yield
of the grammar in general. consider a sequence of actions
of length m that is in the yield of the grammar and has n
instances of an action, actX, that is to be made partially ob-
servable. As we talked about, for yield extension rule one,
any new grammar that allows actX to be partially observ-
able, must accept at least 2n � 1 new action sequences, one
for each possible non-empty subset of the n actions being
unobserved. Thus, addressing partially observable actions
requires the yield of the plan grammar to increase.

To achieve this, rewriting of the grammar can add, in the
worst case, 2n � 1 categories to an individual action’s defini-
tion, where n is the number of instances of a selected argu-
ment in the source category. This can increase the branching
factor of the search for explanations and therefore the sys-
tem’s runtime, since the number of possible explanations is
the largest determiner of ELEXIR’s runtime (Geib 2009).
However three factors tend to minimize this.

First, in practice, n is usually small. Remember, n is the
maximum number of times the same category occurs as an
argument to a category. This is comparable to the number of
times a subgoal recurs in a single decompositional method
in a hierarchical plan(Erol, Hendler, and Nau 1994). As with
such hierarchical plans, where the number of subgoals in a
method is usually in the single digits, in our experience it
is very unusual to have a category with more than ten argu-
ments, and n must be less than this maximum. Thus, again,
in our experience values of n larger than three are very un-
usual making the impact on the branching factor small.

No PO PO present PO missing
init 1.18 (0.3) [19] 3.24 (0.5) [53] 1.90 (0.1) [24]
mod 0.89 (0.1) [19] 2.53 (0.5) [79] 1.61 (0.5) [37]

Figure 2: Runtimes in milliseconds, standard deviation (in
parens), and number of explanations (in square brackets)

Second, the branching factor of the entire grammar is not
increased by 2n � 1. This increase in the branching factor
is localized to those explanations that actually make use of
actions that have had categories added to them and only to
those parts of the plan where the action is used. Thus the
2n � 1 increase in the branching factor is a localized e↵ect.

Third, the runtime of the ELEXIR algorithm is most
closely tied to the number of possible explanations for a
given set of observations (rather than the size of the gram-
mar) (Geib 2009). Thus, an increase in the grammar size and
yield may not translate into an increase in the number of ex-
planations for a particular sequence of observations. While
the size and yield of the grammar may go up, the number of
possible explanations for a given set of observations may go
up or stay the same. As a result, establishing the e�cacy of
this method may require empirical evaluation.

For example, Figure 2 shows average runtimes in mil-
liseconds for ten executions in each of the six test conditions
using both the initial grammar and a grammar modified to
deal with a single partially observable action. The domain
has twenty three possible goals (high level plans), nineteen
observable actions, and is based on a computer security do-
main taken from the DARPA MRC project. Each input was
the first five steps of a larger plan (this was done in order
to remove any e↵ects from varying lengths of observation
sequences). The runtimes, standard deviations (in parenthe-
ses), and the number of explanations produced (in square
brackets) are shown for three recognition test cases: column
1, the observed plan that has no partially observable actions
in it (though such actions are present in the domain), column
2, a plan that has partially observable actions and their ob-
servations are present in the input observations, and column
3, a plan that has partially observable actions with missing
observations. The test cases for the third case were gener-
ated from the test cases for the second case by removing the
partially observable action and adding the next action in the
plan to the observation stream.

We include the first test case (column one), to show that
adding partially observable actions need not have a signif-
icant impact on recognition of plans that don’t involve the
partially observable action. This is attested by the negligible
di↵erences in runtime between the two cases, and the fact
that the same explanations are generated. This is a partic-
ularly nice result as adding partially observable actions to
other methods like (Geib and Goldman 2005) will increase
the runtime of the recognition algorithm across the board.

The most interesting finding in the other cases is that the
runtimes with the partial observed actions missing are faster
than those where in the actions are observed. This is a result
of the smaller number of possible explanations. In the case
where the actions are observed, the system still has to con-
sider the possibility that the observed action is part of some

other plan resulting in a larger number of explanations.
Note the runtimes in the upper third column for the ini-

tial grammar are not strictly comparable to the others since
ELEXIR fails to find the true plan as a result of the missing
observations in the initial grammar. While ELEXIR doesn’t
find the actual plan, it does produce twenty four reasonable
explanations for the observed actions accounting for the run-
time being larger than in the modified case.

Conclusions
The contribution of this work is in demonstrating the via-
bility of automatically rewriting plan grammars to address
partial observability in plan recognition. We have done this
and shown that a particular system, the ELEXIR system, can
e↵ectively use such modified plan grammars with limited
impact. However, the ideas discussed in this work could
be applied to a number of other plan recognition systems,
namely any of those that use an explicit plan library. While
a longitudinal study of the e�cacy of this method across all
other systems, and the features of those systems that could
make its use problematic, would be interesting, we leave this
for future work.

Handling partially observable actions in this way, required
no algorithmic changes for the ELEXIR system, only a re-
coding of the domain. That said, handling such partially
observable actions requires an increase in the yield of the
grammar, and as a consequence, in some cases we can see
an increase in the runtimes for plan recognition. However,
because ELEXIR uses a bottom up, incremental parsing al-
gorithm, the largest increases in runtime for it occurs when
partially observable actions are actually observed.

Note that in developing our algorithm, no e↵ort was made
to produce the optimal grammar. It is well noted that for
almost all grammar formalisms there are multiple grammars
with the same yield. Further, Geib (Geib 2009) has noted
that some CCG plan lexicons result in much faster parsing.
We have left optimizing the rewritten grammar as an area
for future work, and there is the potential that significant
reductions in runtime may be possible in such grammars.

Acknowledgements
The author would like to thank Robert Goldman and
Mark Burstine for helpful discussions on the ideas pre-
sented in this paper. This work was supported by Con-
tract FA8650-11-C-7191 with the US Defense Advanced
Research Projects Agency (DARPA) and the Air Force Re-
search Laboratory. Approved for Public Release, Distribu-
tion Unlimited. The views expressed are those of the author
and do not reflect the o�cial policy or position of the De-
partment of Defense or the U.S. Government.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2005. Fast
and complete symbolic plan recognition. In Proceedings of
IJCAI, 653–658.
Bui, H. H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the Abstract Hidden Markov Model. Journal of
Artificial Intelligence Research 17:451–499.
Carberry, S. 1990. Plan Recognition in Natural Language
Dialogue. ACL-MIT Press Series in Natural Language Pro-
cessing. Cambridge, MA: MIT Press.
Curry, H. 1977. Foundations of Mathematical Logic. Dover
Publications Inc.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task network
planning. In Proceedings of AIPS, 249–254.
Geib, C. W., and Goldman, R. P. 2005. Partial observability
and probabilistic plan/goal recognition. In In Proceedings of
the 2005 International Workshop on Modeling Others from
Observations (MOO 2005).
Geib, C., and Goldman, R. 2011. Recognizing plans with
loops represented in a lexicalized grammar. In Proceedings
of AAAI, 958–963.
Geib, C., and Steedman, M. 2007. On natural language
processing and plan recognition. In Proceedings of IJCAI
2007, 1612–1617.
Geib, C. 2009. Delaying commitment in probabilistic plan
recognition using combinatory categorial grammars. In Pro-
ceedings of IJCAI, 1702–1707.
Hoogs, A., and Perera, A. A. 2008. Video activity recogni-
tion in the real world. In Proceedings of AAAI, 1551–1554.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Addison
Wesley.
Kabanza, F.; Filion, J.; Benaskeur, A. R.; and Irandoust, H.
2013. Controlling the hypothesis space in probabilistic plan
recognition. In Proceedings of IJCAI, 2306–2312.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Allen, J. F.; Kautz, H. A.; Pelavin,
R. N.; and Tenenberg, J. D., eds., Reasoning About Plans.
Morgan Kaufmann. chapter 2.
Liao, L.; Fox, D.; and Kautz, H. A. 2005. Location-based
activity recognition using relational Markov networks. In
Proceedings of IJCAI, 773–778.
Litman, D. 1986. Understanding plan ellipsis. In Proceed-
ings of AAAI, 619–626.
Pynadath, D., and Wellman, M. 2000. Probabilistic state-
dependent grammars for plan recognition. In Proceedings of
UAI, 507–514.
Ramirez, M., and Ge↵ner, H. 2011. Goal recognition over
pomdps: Inferring the intention of a pomdp agent. In Pro-
ceedings of IJCAI, 2009–2014.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Vail, D. L., and Veloso, M. M. 2008. Feature selection for
activity recognition in multi-robot domains. In Proceedings
of AAAI, 1415–1420.

Vilain, M. B. 1990. Getting serious about parsing plans: A
grammatical analysis of plan recognition. In Proceedings of
AAAI, 190–197.
Vilain, M. 1991. Deduction as parsing. In Proceedings of
AAAI, 464–470.

