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Abstract

To be effective, current intrusion detection systems
(IDSs)mustincorporate artificial intelligencemethodsfor
plan recognition. Plan recognitionis critical both to pre-
dicting the future actionsof attackersandplanningappro-
priateresponsesto their actions.Howevernetworksecurity
placesa new setof requirementsonplanrecognition.In this
paperwepresentan argumentfor includingplan recogni-
tion in IDSsand an algorithm for conductingplan recog-
nition that meetstheneedsof thenetworksecuritydomain.

1. Introduction

Intrusiondetectionsystems(IDSs)mustmove from de-
scribing actionsthat have alreadyhappenedto predicting
future actions. For IDSs to fulfill their desiredrole, they
mustbeableto analyzethe actionsof a hacker� , infer the
hackersgoals,andmakepredictionsabouttheir futureac-
tions.In theartificial intelligence(AI) literaturethisprocess
of deducinganagent’sgoalsfromobservedactionsis called
planrecognitionor tasktracking.Wearguethatplanrecog-
nition mustbea centralcomponentin futureIDSs.

However, mostexisting AI literatureon intent recogni-
tion makesa numberof assumptionspreventingits applica-
tion to thecomputernetworksecuritydomain.In ourprevi-
ouswork[8] wehavedescribedanapproachto planrecogni-
tion thatdoesnot maketherestrictiveassumptionsof other
AI intent recognitionsystems.In this paperwe discussits
applicationto thenetworksecuritydomain.

Otherwork in networksecurityhasarguedfor network
level coordinationamongIDSs[1, 6] and even referenced
infering attackerintent [9] asa motovation for this. How-
ever, thesepapershave focusedon theprotocolsandcom-
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municationissuessurroundingthis kind of distributedco-
ordination. In contrast,this paperfocuseson the needfor
and applicationof AI researchin plan recognitionto the
problemsof networksecurityandthe inferenceof attacker
intent.

Theremainderof this paperhasthe following structure.
First, we will argue that plan recognitionis a crucial ad-
dition to networksecuritywork. Secondwe will provide
an overview of previous work in plan recognition. Third
we will describeour implementedtheoryof plan recogni-
tion for hostileagentsfor a computernetworksecuritydo-
main. After presentingthe formalization,we provide an
example,showing how thetheoryis usedandhow it differs
from previousapproaches.Thenweconcludewith remarks
andplansfor futurework.

2. The Need for Plan Recognition

CurrentIDSsdonot predictattacks;they donot provide
anearlywarning.They reportthetypeandpropertiesof an
attackafterit hashappened.Assuchthesesystemsareoften
reducedto therole of postmortemanalysisratherthanbe-
ing proactive. While recognitionof attacksis animportant
ability, it falls shortof thecommunity’s vision for IDSsas
systemsthatpredictfuturehackeractionsandautomatically
andcorrectlyrespondto attacksin a timely manner.

To beproactiveIDSsmustbeableto infer thegoalsof at-
tackers.Identifying theattacksis not sufficient.To seethis,
considerthe caseof an IDS reportof a synflood. For the
purposesof this exampleassumethat the attackerit using
thissynfloodfor oneof two reasons.

1. DOSattackto preventouruseof themachine.

2. SuppressingahostduringanIP spoofingattackonan-
othermachine.

To correctlyrespondto this attackan IDS needsto un-
derstandthe intentof the attacker, predictthe next actions
of theattackerandthentakeactionsto preventthesefuture
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actions.To seethis,considereachof thepossibleintentsin
turn.

First, supposethe attackeris usingthe synfloodto pre-
ventour useof themachine.Knowing this, we would pre-
dict thattheattacker’s futureactionswill beto continuethe
floodof SYN packetsto suppressthemachine.To respond
to this attackwe canmodify the firewall to rejectpackets
from the attackinghostor to only allow a specifiednum-
ber of connectionsfrom the attackinghost to the DOSed
machine.This is will effectively limit the numberof open
connectionsandpreventtheDOSattack.

Second,supposetheattackeris usingthesynfloodaspart
of anIP spoofingattackandhisgoalis accessto a different
machineentirely. Knowing this we would predictthat we
would seepacketsthat appearto originatefrom the sup-
pressedhost,wemightseethesynfloodstoponits own and
possiblytheestablishmentof a connectionfrom outsidethe
network to anotherhost on the network (one the original
host trusted). To respondto this attackwe shouldmodify
the firewall to prevent all external connectionsto all ma-
chinesthattrustthesynfloodedmachine.

Noticethatwhile thereportedactionis thesame,thecor-
rectresponseis completelydifferent.In facttheresponsein
thefirst casewill have no effect if theattacker’s goalis ac-
cessto anothermachine.By the time thefirewall hasbeen
modifiedandthesynfloodclearstheIP spoofingattackwill
havebeenexecutedandtheattackerwill likely alreadyhave
accessto the machine.Converselyif theattackersreal in-
tent is just to DOStheselectedhost,respondingasthough
an IP spoofingattackis underwaywill cut off connections
to othermachinesfrom theinternet.In short,inferring that
theattacker’sgoalis “accessto thesystem”ratherthan“de-
nial of services”is critical in bothmakingpredictionsabout
what theattackerwill do next andtakingthecorrectcoun-
termeasures.

What we are suggestingis that IDSs needto combine
multiple reportsand information to identify the attacker’s
goals. In this case,there is a convenientclue to the at-
tacker’s intent: partof anIP spoofingattackis thesending
of packetsto a hostwith theIP addressof theDOSedhost.
GivenanetworkbasedIDS thatcanwatchfor theseanoma-
louspackets,recognizingthesynfloodasaDOSversuspart
of an IP spoofis relatively easy. Converselyif no spoofed
packetis observedtheattackeris likely engagingin asimple
DOS.

Thisexampleillustratesthekindof reasoningthatweare
advocating.By takingtheoutputreportsof currentIDSsas
a streamof observed actions,andusingintent recognition
techniques,it is possibleto infer the attacker’s goalsand
thusaccuratelydirect responses.However this simplede-
scriptionpaintstoo rosya picture.Previouswork on intent
recognitionhasmadea numberof simplifying assumptions
thatwouldpreventits applicationto thisdomain.In thefol-

lowing sectionwe will discusstheseassumptionsand the
requirementsplacedonplanrecognitionsystemsby thenet-
work securitydomain.

3. Requirements on Plan Recognition

Therequirementsthatareplacedonourplanrecognition
systemcomefrom two differentaspectsof thenetworkin-
trusiondetectionproblem.First,we areattemptingto infer
theplansof covert agents.As wealreadyknow hackersof-
ten takedeliberateactionsto “cover their tracks” andhide
their actionsandintentions.This will placesignificantre-
quirementson the processof plan recognitionthat arenot
truewhentheagentbeingobservedis cooperative.

Second,taking plan recognitionin the computersecu-
rity domainseriouslyrequiresconfrontinga numberof is-
suesthat have not beenexaminedin more theoreticalor
academicdomains. In this case,the plansthe hackersare
following have propertiesthat are not as prevalent in the
domainsthathave beenthetraditionalareasfor planrecog-
nition. In the following sectionswe will considerthe re-
quirementsplacedon aneffective plan recognitionsystem
by thesefactorsin turn. In eachcasewewill identify there-
quirementandattemptto providea motivatingexamplefor
it.

3.1. Hostile agents

Mostpreviouswork in planrecognitionhasassumedco-
operative agents.This domainmakesthis assumptionun-
tenable.Wehave identifiedthetwosignificantrequirements
thathostileagentsplaceon planrecognition.They arethe
ability to infer unobserved actionsfrom observed actions
andinferringunobservedactionsfrom observationsof state
changeWe discussthesein turn.

Unobserved actions: Given that hackersmay be us-
ing new exploits, it is entirelypossiblethat they mayhave
actionsthat our currentIDSs do not recognize.Consider
a conventionalsignaturedetectorwhenfacedwith an un-
known exploit. Sinceit doesn’t have the signaturefor the
attackit will not report. In somecases,even small varia-
tionsof anexploit canmakeanattackinvisible to a signa-
turedetector.

Furtherin real networksthereareoften “holes” in the
IDSs coverage. That is, hoststhat do not have sufficient
sensorcoverageto detectall of themaliciousactivities that
might occur on the system. Hackersenteringa system
throughoneof thesesensorholeswill not beobserved by
thesystem’s IDSs.

If ourplanrecognitionsystemis to besuccessfulin this
domain,it mustbe ableto infer the occurrenceof actions
that it hasno reportof whenotherevidencesuggeststhey
have occurred.Considerthe caseof an attackon a single



machinethatis observedwithoutany preliminaryscanning.
Sincewe know that identifying theIP addressandrelevant
portnumbersareimportantfor thisattack,wecaninfer that
somescanningor information-gatheringaction musthave
occurredbeforetheattack,eventhoughwedid not observe
it.

Observations of state changes: Considerthe reportof
a new servicerunningon a host. Note that we distinguish
betweena reportof theactionof startingthe serviceanda
reportthattheserviceis now runningandit previouslywas
not. The first reportwould be generatedby a host based
IDS thatwatchedthehackerstarttheservice.Thereportof
a statechangemight begeneratedby a networkbasedIDS
thatscansto identify thatnounauthorizedservicesarebeing
run. In thefirst caseweseetheactionandin thesecondwe
onlyobservetheeffectof theaction;wereceiveareportof a
statechange.Fromthisstatechangewecaninfer thatthere
wasanactionthatcausedit.

Existing work hasnot examinedthe issueof reportsof
statechanges.In thecaseof cooperative agentsthereis no
need.If theagentis cooperative we canassumewe have a
completelist of theagent’sactions.Thereis noreasonto in-
fer theexecutionof unobservedactionsfrom statechanges;
the completesetof actionsis alreadyavailable. However
with anincompleterecordof theagent’s actions,reportsof
statechangecanprovideevidenceof unobservedactions.

3.2. Real World Computer Security

Therearea numberof requirementsthat we will place
on our plan recognitionas a result of concernsthat plan
recognitionbe incorporatedinto deployableIDSs. These
requirementsincludethe ability to reasonabout: partially
orderedplans,multiple concurrentgoals,actionsusedfor
multiple effects, failing to observe an action,the effect of
world stateontheattackersplans,andmultiplepossiblehy-
potheses.We considereachof thesein turn.

Partially ordered plans: Theplanshackersfollow are
oftenveryflexible in theorderingof theirplanssteps.Con-
sidersystemscanningby IP-sweepingandport scanning.
Thesestepscanbeinterleavedin at leasttwo orders.

1. Collect a large numberof IP addressesandthenport
sweepingeachof them.

2. PortsweepeachIP addressasit is found.

While portsweepingahostcanonlybedoneafterthehost’s
IP addresshasbeenidentified,therearenootherconstraints
ontheorderof theactions.Thismeansthattheeportsweep
actionsfor asubdomainarenotorderedwith respectto each
otherbut only with respectto theIP addressdiscovery pro-
cess. In short, the port sweepactionscanbe executedin
many acceptableorderings.

In theAI planningandplanrecognitionliterature,plans
that have this kind of flexible orderingbetweenthe plan
stepsarecalledpartially orderedplans. In thesecases,the
orderingconstraintsof theplanonly establishapartialorder
over theactionsof theplan. In contrastwhentheordering
constraintsimposea total orderon the actionsof the plan
wecall thisa totally orderedplan.

Sincethe plansthat are followedby the attackershave
this more flexible, partially orderedstructure,we will re-
quirethatour systembeableto recognizethemultiplepos-
sibleinstantiationorderingscreatedby theseplans.

Multiple concurrent goals: Hackersoften have multi-
ple goals. That is, a hackermight be interestedin stealing
yoursensitivecorporatedataaswell asusingyourcomput-
ersto launchattacksagainstothertargets. Much previous
work in planrecognitionhaslookedfor thesinglegoalthat
bestexplains all the observations. In contrastwe will re-
quire that our plan recognitionsystembe ableto consider
caseswheretheagenthasmultiplegoals.

Actions used for multiple effects: Often in the com-
putersecuritydomaina singleactioncanbeusedfor mul-
tiple effects. Considerthe scanningof a subdomain.This
informationcanbe usedboth for a DOS attackaswell as
to identify the web server that hackerwantsto deface. In
this case,it is not necessaryfor theattackerto performthis
samescanfor eachgoal; they cando it oncefor both. In
effect they “overload”thescanningactionanduseit to con-
tributeto multiplegoals.A critical requirementfor ourplan
recognitionsystemis thatit beableto handlethesekindsof
actions.

Failure to observe: Supposewe observe a scanningof
our subnetwork.The longerthewe go without seeingany
further activity, the morelikely we areto believe that this
was just an isolatedscanningevent. It was not part of a
largerplan. However, if right after the scanningevent,we
seeothermaliciousactivity thenwe aremorelikely to be-
lievethescanis thereconnaissancestepof aplan.

In this case,sincewe areexpectingto seemaliciousac-
tivity following thescan,whenwe don’t seeit, we change
ourbeliefin thelikelihoodthatthescanwaspartof anattack
andinsteadattributeit to a “random” scan.More formally,
the failure to observe actionsthat confirm our hypothesis
resultsin loweringour estimateof how likely we think the
hypothesisis.

Considerthecaseof anIDS thatis 99%effectiveat iden-
tifying aparticularexploit. Onthebasisof thisveryreliable
detectorwe canmakea numberof inferences.Oneof the
mostimportantis thatif we don’t receive a reportfrom the
detectorthen it is very unlikely that the attackerhasexe-
cutedthisexploit. In general,thereareasignificantnumber
of conclusionsthatonecandraw fromthefailureto observe
actionsandwe will requirethatour systembeableto per-
form thiskind of reasoning.



Our previous commitmentto consideringagentswith
multiple concurrentgoalsmakesit even morecritical that
ourplanrecognitionsystembeableto engagein thiskind of
reasoning.It is rarethatwewill beprovidedwith definitive
evidencethatanattackeris not pursinga specificgoal. Far
morelikely is thata lackof evidencefor thegoalwill lower
its probability. As a result, reasoningon the basisof the
“failure to observe” is critical for a planrecognitionsystem
to preferthoseexplanationswherethe agentis pursuinga
singlegoalover thosewheretheattackerhasmultiplegoals
but hasnot performedany of theactionsfor oneof them.

Impact of world state on adopted plans: World state
can have significantimpacton the goalsthat areadopted
by an attacker. Considerthe caseof a computernetwork
securityfirm thathasnot lockeddown its publicweb-server
outsideits firewall. Whenan attackerseesthis we would
hardly find it surprisingif they adoptthe goal of defacing
thefirm’sweb-page.In general,situationalfactorscanhave
a significanteffect on the goalsadoptedby agentsin any
real world domain. We will requireour plan recognition
algorithmbeableto handletheseeffects.

Consideration of multiple possible hypotheses: Pro-
viding a singleexplanationfor theobservedactionsin gen-
eralis notgoingto beashelpfulasrankingthepossibilities.
Considerthecasewhereall weobserve is scanningactivity.
While this indicatesahackeris interestedin ournetwork,by
itself it providesvery little evidenceaboutthe hacker’s in-
tent. Ratherthangiving just oneof themany equallylikely
answersit is muchmorehelpful to reporttherelative like-
lihood of eachof the possibilities. This provides the in-
formationthat therearemultiple equallylikely hypotheses
to explain theobservationsratherthana singlemostlikely
one.

Fromhereon,ourdiscussionof issuesandsolutionswill
behelpedby a specificmotivatingexample. Thereforethe
following sectionwill provide a brief introductionto our
planrepresentationandanexampleplanlibrary thatwewill
usefor theremainderof thepaper. Following this introduc-
tory materialwewill discusssomebackgroundinformation
on the existing AI work in plan recognitionandwhereit
hasmet the requirementswe have specifiedand whereit
hasfailed.

4. Plans

In this paper, weusesimplehierarchical(taskdecompo-
sition) plans[5], asmostplan recognitionwork does. We
assumethatagentshaveaplan library thatprovidesrecipes
for achieving goals. Figure 1 shows a plan library for a
“hacker” in a simplifiedcomputernetworkintrusionexam-
ple.

If a hackerhasa goal like stealinginformationfrom a
computer(theft), theplanlibrary breaksthatgoal into five

steps: scanthesystemto determinevulnerabilities(recon),
exploit the system’s weaknessesto gain entry (break-in),
escalateprivileges(gain-root), export desireddata(steal),
andhide tracesof presenceon computer(clean). Order-
ing constraintswithin a methodarerepresentedby directed
arcs.For example,thehackermustbreak-in beforeshecan
gain-root.

Finally, noticethat thereis a condition/eventthat is tied
to the action clean. The dashedline representsthe fact
that this conditionresultsfrom theexecutionof theaction.
Thus,if clean is executedit will resultin deletedeventlogs
(deleted-logs). This informationaboutactioneffects will
becritical to inferringtheexecutionof unobservedactions.

5. Plan recognition background

Planrecognitionis the processof inferring thegoalsof
an agentfrom observationsof an agent’s actions. Cohen,
PerraultandAllen [4] distinguishbetweentwokindsof plan
recognition,keyholeandintendedplanrecognition.In key-
holerecognition,therecognizeris simply watchingnormal
actionsof anagent.Theagentdoesnotcareor is notaware
that their actionsarebeingobserved. They aresimply en-
gagingin thetask.In intendedrecognition,theagentis co-
operative; its actionsaredonewith the intent that they be
understood.Thismayresultin theagentperformingtheac-
tion in a particularor stylizedway in aneffort to assistthe
recognizerin the task. Intendedrecognitionarises,for ex-
ample,in cooperative problem-solvingandin understand-
ing indirect speechacts. In thesecases,recognizingthe
intentionsof the agentallows us to provide assistanceor
respondappropriately.

From thesetwo kinds we distinguishadversarialplan
recognition.It arisesin contexts like networksecurity, mil-
itary intelligenceandgame-playing,wheretheagentis ac-
tively hostileto theobservationof their actionsandthe in-
ferenceof their plans.As we have pointedout already, ad-
versarialplanrecognitionrequirestheviolationof anumber
of assumptionsthat arereasonablein thecasesof keyhole
andintendedplanrecognition.

Theearliestwork in planrecognition(e.g.,[15, 19]) was
rule-based;researchersattemptedtocomeupwith inference
rulesthatwould capturethenatureof planrecognition.To
thebestof our knowledge,Charniak[3] wasthefirst to ar-
guethatplanrecognitionwasbestunderstoodasa specific
form of the generalproblemof abduction, or reasoningto
thebestexplanation.Abduction,asopposedto deductionor
induction,is reasoningfrom “A impliesB” andknowledge
of “B” to deduce“A”. This is thereasoningpatternfor most
kindsof diagnosis.

In 1986,Kautz andAllen (K&A) published“General-
izedPlanRecognition,” [12]. This work hasframedalmost
all subsequentwork in planrecognition.K&A definedthe
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Figure 1. A hierarchical plan library in diagram form.

problemastheproblemof identifyinga minimalsetof top-
level actionssufficient to explain the set of observed ac-
tions.

Planswere representedin a plan graph,with top-level
actionsasroot nodesandotheractionsasnodesimplying
thetop-level actions.To a first approximation,theproblem
of planrecognitionwasthena problemof graphcovering.
They treatedtheproblemasoneof computingminimal ex-
planations,in the form of vertex covers,of theplangraph.
They formalizedthis in termsof McCarthy’s circumscrip-
tion.

For example,if oneobserved recon (SeeFigure1) the
threeminimalexplanationswouldbe:

�
theft ��� �

vandalism ��� �
info �

Noticethat,with only thisobservationwehavenoevidence
to rule out thepossibilitythat theagenthasmultiple goals.
Thissingleactioncouldalsoexplain two or even threetop-
level goalslike:

�
theft 	 vandalism�

or

�
theft 	 vandalism 	 info �

However, K&A insistenceon aminimalsetof top-level ac-
tionspreventstheconsiderationof thesepossibilities.Even
if they areequallylikely. This violatesour requirementof
theability to supportmultipleconcurrentgoalsandthecon-
siderationof multiplepossiblehypotheses.

Anotherproblemfor the useof K&A’s approachin the
networksecuritydomainis thatit doesnottakeinto account
differencesin the a priori likelihood of different plans.
CharniakandGoldman(C&G) [2] arguedthat, sinceplan
recognitioninvolves abduction,it could best be done as

probabilistic(Bayesian)inference.Bayesianinferencesup-
portsthepreferencefor minimalexplanations,in thecaseof
hypothesesthatareequallylikely (asin thepreviouscase.)
However, it alsocorrectlyhandlesexplanationsof thesame
complexity but differentlikelihoods.For example,it is pos-
siblefor a legitimateuserto adda .rhostsfile to a longdor-
mantaccount,but it is far morelikely thatwe have hadan
intrusion.

Two planrecognitionsituationsthatarenot handledby
eitherK&A or C&G aretheproblemsof influencesfromthe
stateof theworld andevidencefrom failure to observe ac-
tions.As wediscussin Section3 thestateof theworld will
influenceanagent’s decisionto pursueplans. K&A could
not takethis into account,becausethey did notconsiderthe
relative likelihood of plans. Even for C&G, however, it is
not simple to take this into account,becausethey defined
theirprobabilitydistributionsover theplanlibrary.

The problemof evidencefrom failure to observe is a
more complex one. Considerwhat would happenif one
observed recon and break-in. Assumingthat they were
equallylikely a priori, onewouldconcludethateithertheft
or vandalism were equally good explanations(seeFig-
ure1). However, astimewentby andonesaw otheractions,
withoutseeingmod-webpage, onewouldbecomemoreand
morecertainthat theft wastheright explanation.Systems
like thoseof C&G andK&A, arenot capableof reasoning
like this,becausethey donot considerplanrecognitionasa
problemthatevolvesover time. They cannotrepresentthe
factthatanactionhasnotbeenobservedyet. They canonly
besilentaboutwhetheranactionhasoccurred— whichjust
meansthatthesystemhasfailedtonoticetheaction,notthat
theactionhasn’t occurred— or assertthatanactionhasnot
andwill not occur.

Vilain [17] presenteda theory of plan recognitionas
parsing,basedon K&A’s theory. 
 Vilain doesnot actually

�
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proposeparsingasa solutionto theplanrecognitionprob-
lem. Instead,heusesthereductionof limited casesof plan
recognitionto parsingin orderto investigatethe complex-
ity of K&A’s theory. Themajorproblemwith parsingasa
modelof planrecognitionis that it doesnot treatpartially-
orderedplansor interleavedplanswell. Indeed,partial or-
dering(clean andgain-root can be donein any order, as
longasbreak-in is donefirst), wouldcauseanexplosionin
thesizeof Vilain’sgrammars.

There are grammaticalformalisms that are powerful
enoughto captureinterleaving. However, thecentraladvan-
tageof parsingasamodelis thatit admitsof efficient imple-
mentationwhenrestrictedto context-freelanguages.There
arecontext-free parsingalgorithmsthat are � ��
�� � which
wouldmakefor very efficient planrecognition.However if
we increasethepower of thegrammarto admit interleaved
planstheseefficient algorithmsareno longeravailable to
us.

Morerecently, WellmanandPynadath(W&P) [18] have
proposeda planrecognitionmethodthatis bothprobabilis-
tic and basedon parsing. W&P representplan libraries
asprobabilisticcontext-freegrammars(PCFGs)andextract
Bayesnetworksfrom the PCFGsto interpretobservation
sequences.

Unfortunately, thisapproachsuffersfrom thesamelimi-
tationson planinterleaving asVilain’s. W&P proposethat
probabilistic context-sensitivegrammars(PCSGs)might
overcomethis problem,but it is difficult to definea prob-
ability distributionfor a PCSG[14].

Huber, et. al. [10] presentanapproachto keyhole plan
recognitionfor coordinatingteamsof agentsbasedon the
ProceduralReasoningSystem(PRS)[7, 11]. PRSis a plan-
ning architecturethat useshierarchicalplan specifications
verysimilar to ourplanlibrary anda reactive executionen-
gineto allow thesystemdesignerto build agentsthatfollow
thespecifiedplans.

Huber’s algorithm automaticallygeneratesplan recog-
nition belief networksfrom PRSplan specifications.The
most importantdifferencebetweenour work and theirs is
thatweobtaina simplerstructureby workingwith theplan
representationdirectly, insteadof generatinga belief net-
work as an intermediaterepresentation.Further, it is not
clearhow they handletheinterleaving of multipleplansand
thedevelopmentof plansover time.

In the following sectionwe will describeour previous
work (GG&M)[8] on plan recognitionandsomeadditions
to it thatweremadefor thenetworksecuritydomain.The
central motivations for our previous work are the same
shortcomingsin previousplanrecognitionsystemswehave
pointedout in thissectionnamely:

� partially-orderedplansandplaninterleaving;

� multipleconcurrentgoals;

� actionsusedfor multipleeffects;

� evidencefrom thefailureto observe expectedactions;

� contextual influenceonplanchoice;

� considerationof multiplepossiblehypotheses

In the following section,we will provide a brief overview
of oursystemthathandlestheseconcernsandthenturn to a
discussionof how to handletheissuesraisedby adversarial
planrecognition.

6. Recognition based on execution

Theplanrecognitionframework developedin GG&M is
basedontherealizationthatplansareexecuteddynamically
andthatatany givenmomenttheagentis ableto chooseto
executeany of theactionsthathavebeenenabledby its pre-
viousactions.Thus,at any time anagentwill have a pend-
ing setof actionsthat areenabledby its previous actions.
Theagentis freeto chooseto executeany of theactionsin
thecurrentpendingset.

To formalize this slightly, initially the executingagent
hasa setof goalsandchoosesa setof plansto executeto
achieve thesegoals.Thesetof planschosendeterminesthe
setof pendingprimitive actions.As the episodeproceeds,
theagentwill repeatedlyexecuteoneof thependingactions,
andgeneratea new setof pendingactionsfrom which fur-
theractionswill bechosen.

Thenew pendingsetis generatedfrom the previousset
by removing theactionjust executedandaddingnewly en-
abledactions.Actionsbecomeenabledwhentheir required
predecessorsarecompleted.This processis illustratedin
Figure2. To providesomeintuition, thesequenceof pend-
ing setscanbe seenasa Markov chain,and the addition
of theactionexecutionswith unobservedactionsmakesit a
hiddenMarkov model.

To usethis modelto performprobabilisticplan recogni-
tion, we usethe observationsof the agent’s actionsas an
executiontrace.By steppingforwardthroughthetrace,and
hypothesizinggoalsthe agentmay have, we can generate
the agent’s resultingpendingsets. Oncewe have reached
theendof theexecutiontracewewill have thecompleteset
of pendingsetsthatareconsistentwith theobservedactions
andthesetsof hypothesizedgoalsthatgowith eachof these
sets.Oncewehave thissetweestablishaprobabilitydistri-
butionover it. We canthendeterminewhichof thepossible
goalstheagentis mostlikely pursuing.

Notice that the observationsof the agent’s actionsare
usedto constructtheexecutiontraces.In thecaseof hostile
agents,theobservationswill not, in general,bea complete
recordof theexecutiontrace.Insteadit will benecessaryto
considerexecutiontracescontainingunobservedactions.



•Ê•� Ê•

•Ê•� Ê•

•Ê•� Ê•

C9705
�

70-01

pending
(0)

pending
(3)

happen
(?A1,1)

happen
(?A2,2)

happen
(?A3,3)

plan
2

plan
1

plan
n

pending
(1)

pending
(2)

Figure 2. Generation of pending sets.

Thistheorywasdesignedto handle:partiallyorderedac-
tions,overloadedactions,theeffectsof context, andnega-
tiveevidencefrom notobservingactions(i.e. thedogdidn’t
bark). While someof theseproblemsarepartially handled
by othersystems,no othersystemhandlesall of them. We
referthereaderto GG&M for acompletediscussionof this
formalism.We will now considerextendingthis formalism
to theproblemspresentedby hostileagents.

7. Problems with hostile agents

Existingwork onplanrecognitionhasassumedcomplete
observability of theagent’sactions.Takingadversarialplan
recognitionseriouslymeansthatwe canno longerrely on
this. That is, we want to infer the goalsof anagentgiven
that the behavior of the agentis only partially observable.
Earlier we pointedout requirementson systemsthat want
to move away from this assumption.They must be able
to infer unobservedactionsfrom observedactions,andthey
mustbeableto inferunobservedactionsfromstatechanges.

Therestof this paperwill beorganizedasfollows,first
wewill discusshow wehave addedthesetwo kindsof rea-
soningto oursystem.Wethendiscussourgeneralalgorithm
for planinference,andwe will concludewith a discussion
of theassumptionsandlimitationsof thealgorithm.

7.1. Inferring unobserved actions from observed
actions

Considerthefollowing observations:

�
gain-root,mod-webpage�

Thesetwo observationsindicatewith very high probability
thatthehackeris engagedin bothstealinginformationfrom
a computeranddefacinga webpage.We canconcludethis

becausetheseactionsaremembersof disjointplans,thatis,
nosingleroot goalwill explain bothof theseactions.

However theseactionsareeven moreinformative since
they arebothunenabledby theobservedactions.Wedefine
an unenabledaction is one that is observed without hav-
ing first observedtheactionstheplanlibrary specifiesmust
comebeforeit. In this case,theplan library specifiesthat
recon andbreak-in mustoccurbeforegain-root or mod-
webpage. Therefore,in orderto explain thesetwo observa-
tionswemustassumetheexecutionof at leastoneinstance
of recon andbreak-in each.Thus,thesetwo actionspro-
videevidenceof two distinctplans:

(recon, break-in, mod-webpage)
and

(recon, break-in, gain-root)

Considerour model of plan recognition. Unenabledac-
tionsprovide moreinformationfor usto useto reconstruct
theagent’sactualactionsthanotherobservations.They re-
quirethat theactionitself be in thesequence,but they also
provide evidenceof unobserved actions. Considergener-
ating the executiontracesneededto producethe pending
setsfor the last example. Not only doesthis setof obser-
vationsallow us to pruneout any executionsequencethat
doesn’t containa gain-root, followed sometimelater by
a mod-webpage, but it alsoallows us to ignoreany trace
thatdoesn’t havearecon followedby abreak-in preceding
thegain-root. Theseunenabledactionsarevery important
piecesof informationwhenattemptingto infer theplansof
hostileagents.

Notethatin this discussion,wehave implicitly assumed
the agentcanperformany actionwithout detection,how-
ever in practicethis is not true. Someactionsaresimply
harderto hidethanothers.For example,theprobabilitythat
a personcould conducta port scanof my machinewith-
out my knowledgeis muchhigherthantheprobabilitythat
they couldsuccessfullycarryout a denialof serviceattack



againstit without my noticing. In this framework it is triv-
ial to addprobabilitiesaboutthelikelihoodof anagentper-
forminga specificactionundetected.

7.2. Inferring unobserved actions from state
changes

Often, whenit is possibleto prevent an observer from
seeingthe performanceof an action, it is not possibleto
prevent the observationof the action’s effects. In our net-
work securitydomainconsidertheclean action;theexecu-
tion of theactionmight behidden,but thedeletingthe log
files is very visible.

Reportsof statechangescanprovide evidenceof unob-
servedactionsthathave the desiredeffect. From themwe
caninfer that the actionhasoccurredbeforethe reportof
thestatechange.Reportsof statechangecanalsoprovide
confirminginformationabouta previouslyobservedaction.

Considerthefollowing sequenceof observations:

�
recon,break-in,deleted-logs �

Thereportof thedeletedevent logsimpliesanunobserved
clean action. Furtherthe orderingconstraintsin the plan
library imply that it must fall betweenthe execution of
break-in and the report of deleted-logs. However, if the
sequenceof observationswere:

�
recon, break-in, clean, deleted-logs �

The report would provide no extra informationsinceit is
consistentwith the observed actions. Like acquiringevi-
dencefrom unenabledactionsthesereportsgive more in-
formationabouttheexecutiontracesthatareconsistentwith
theobservation.

7.3. The solution

The centralideabehindour plan recognitionalgorithm
is theproductionof aprobabilitydistributionover thesetof
all pendingsets.This is generatedusingtheobservationsas
anexecutiontraceof theagent’s actions.Sinceeachpend-
ing setis usedin at leastoneexecutiontrace,we generated
the pendingsetsby steppingthroughobservations. In the
caseof cooperativeagentswith completeandcorrectobser-
vations,this is sufficient.

However, aswe have pointedout, in the caseof hostile
agentswe face a problemwith the executiontraces. We
canno longerassumethat the observation streamis com-
plete;it no longerrepresentsthecompleteexecutiontrace.
Instead,for eachsetof observationswe mustconstructthe
setof possibleexecutiontraces,insertinghypothesizedun-
observedactionsto completethem.

For easyimplementationwe have assumeda boundon
the numberof unobserved actions. The next sectiondis-
cussesremoving this assumption. Given a finite set of
primitive actions,boundingthe numberof unobserved ac-
tions providesa limit on the lengthandnumberof execu-
tion tracesthat mustbe considered.In the worst casewe
only needto considerall executiontraceswhoselength is
equalto the maximumnumberof unobservedactionsplus
the numberof observed actions. This soundslike a very
large searchspace,however we canprunethis setof exe-
cutiontraceswith theorderingconstraintsprovidedby the
observations.

Weareonly interestedin executiontracesconsistentwith
the observations,thereforeif a sequencedoesnot contain
all the observed actionsor doesn’t obey the orderingcon-
straintsimposedby the sequenceor plan library it cannot
generateoneof the pendingsetswe are interestedin and
thereforecanbefilteredfrom consideration.Theexecution
tracescan alsobe filtered to be consistentwith the unob-
served actionsthat are implied by unenabledactionsand
observedstatechanges.

To summarizethen,wehandlehostileagentsby extend-
ing theobservedsequenceof actionswith hypothesizedun-
observedactionsconsistentwith boththeobservedactions,
observedstatechanges,andtheplangraphto createasetof
possibleexecutiontraces.Thenwefollow theplanrecogni-
tion algorithmasbefore.We usethesetof executiontraces
to constructthependingsetsandthentheprobabilitydistri-
butionover thesetsof hypothesesof goalsandplansimpli-
catedby eachof thetracesandpendingsets.

7.4. Example

Thefollowing examplewill illustratethis algorithmat a
high level. Considerthe following setof actionandstate
changeobservationswith a boundof threeunobservedac-
tions. �

break-in,deleted-logs �
Given theseobservationsand the boundon unobservable
actions,the algorithm(implementedin Poole’s PHA [13])
walks forward throughthe list of observations,addingun-
observedactionsasrequiredto build a setof consistentex-
ecutiontraces. To explain the given observationsrequires
the introductionof two unobserved actions,oneto enable
the actionbreak-in andoneto causethe statechangere-
portedin deleted-logs. The completeprocessresultsin 9
possibleexecutiontraces.Thefirst:

�
recon,break-in,clean,deleted-logs �

is consistentwith theagentnot having executedany further
unobservedactionsbeyondthoserequiredto justify theob-
servations.This traceis only consistentwith thehigh level
goalsof theft or vandalism.



Therearefour tracesthatareconsistentwith theexecu-
tion of asecondunobservedrecon actionperformedatvari-
ouspointsin thesequence.Thesetracesarenotshownhere,
however they wouldbeconsistentwith thegoalof pursuing
any two of thetop level goalsconcurrently.

Of thefour remainingtraces:

(recon,break-in,gain-root, clean,deleted-logs)
and

(recon,break-in,clean,deleted-logs,gain-root)

areconsistentonly with thegoalof theft. Notetheordering
differencesdue to the partial orderingin the plan library.
Thefinal two executiontraces:

(recon,break-in,mod-webpage,clean,deleted-logs)
and

(recon,break-in,clean,deleted-logs,mod-webpage)

areconsistentonly with thegoalof vandalism. Again,note
the orderingdifferencesdue to the partial orderingin the
planlibrary.

In constructingthissetof possibleexecutiontracesPHA
hasalreadyestablisheda probability distribution over the
explanationsandestablishesthe most likely goal. In this
case,sincethe numberof explanationsfor theft andvan-
dalism areequalandtherearenoenvironmentalfactorsthat
would weighin favor of oneover theother, thesegoalsare
equallylikely. Theconjunctiveplansof theft or vandalism
with info is amuchlesslikely third alternative.

7.5. Assumptions

In our implementationof this algorithmwe have made
two assumptionsabouttheobservationstream:

1. Thereis afixedandknownupperboundonthenumber
of unobservedactions.

2. Thegivenobservationsaretrueandcorrectlyordered.

Neitherof theseassumptionsis strictly necessary. We will
considereachof themin turn.

Boundingthenumberof possibleunobservedactionsen-
ablesreasoningaboutwheretheagentcouldbein theexe-
cution of its plans. Supposewe boundthe numberof un-
observedactionsat two, andweobserve a break-in action.
This observationis not consistentwith theagenthaving al-
readyexecutedsteal. Wehaveseenoneactionandtheagent
may have executedtwo moreunobserved. The agentcan
have executeda total of threeactions. Since,steal is the
fourthstepin its plan,theagentcouldnotyethaveexecuted
it.

Thisboundcanberemovedfrom thealgorithmin anum-
berof waysincluding:runningthealgorithmmultipletimes
with increasingboundsor replacingtheboundwith a prob-
ability distribution over the numberof unobserved actions

andweighingtheexecutiontracesaccordingly. We seede-
terminingthebestway to remove this limitation asanarea
for futurework.

Second,we assumedthat the observed actionshappen
and in the order indicatedby the sequence.Thus if we
have a sequenceof threeobservations: recon, break-in,
and gain-root, we know recon happenedbefore break-
in which happenedbeforegain-root. The observationse-
quencesarenot assumedto becomplete,thereforewecan’t
concludeclean didn’t happenbetweenbreak-in andgain-
root or evenaftergain-root. However, orderingconstraints
providedby theplanlibrary allow usto ruleoutsomepossi-
bilities. For example,theorderingconstraintsallow uscon-
clude that if clean did occur unobserved it couldn’t have
occurredbeforethe break-in unlesstherewerean earlier
unobservedbreak-in.

This assumptionmeanswe neednot questionthevalid-
ity of observations.However, in environmentswith hostile
agents,thisassumptionmustbequestioned.Consideramil-
itary example,if we receive a reportof troopsmassingat a
particularlocation,we mustfirst determinethe validity of
thereportbeforeconsideringtheeffect this would have on
ourassessmentof theenemy’s goals.It is howeverstraight-
forwardto complicatethemodelby includinga traditional
modelof noisyobservations.

8. Conclusions

In this paperwe have arguedfor extendingIDSswith a
probabilisticmodelof planrecognition.We have identified
many requirementsthat areplacedon the processof plan
recognitionby thenetworksecuritydomainandhaveshown
how ourmodelof planrecognitionbasedonplanexecution
meetstheserequirements.Theseextensionsremove a ma-
jor assumptionof previousresearchin planrecognitionand
significantlybroadensthe domainswhereplanrecognition
canbeapplied.

In futurework weareinterestedin moreadvancedforms
of misdirection.Our currentmodelstill doesnot provide a
facility to representthat an agentmay be engagingin ac-
tions solely to misleadthe observer. Our modelcurrently
mustconcludethattheagentdoesin fact intendto perform
theactionsfor thespecifiedgoal. In a sensethis is correct;
theagentdoesintendtheactionsbut not theresultinggoal.
Theagentonly intendsto misleadthe observer ratherthan
achieve thegoal.

Finally, andperhapsmost importantlyfor our domain,
we are interestedin disambiguatingthe goalsof multiple
agentswithin the sameobservationstream.Any computer
networkadministratorwouldbethrilled if they only hadto
dealwith a singlehackerat a time, however this is simply
not thecase.For ourwork to betruly usefulin this domain
we mustbeableto disambiguatemultiple agentsthatmay



beworking togetheror separately.
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