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Abstract

To be effective, current intrusion detection systems
(IDSs)mustincorporate artificial intelligencemethodgor
plan recognition. Plan recognitionis critical bothto pre-
dicting the future actionsof attadersand planningappro-
priate responseto their actions.However networksecurity
placesa new setof requirement®n planrecognition.In this
paperwe presentan argumentfor including plan recogni-
tion in IDSsand an algorithm for conductingplan recog-
nition that meetghe needsf the networksecuritydomain.

1. Introduction

Intrusiondetectionsystemg1DSs) mustmaove from de-
scribing actionsthat have alreadyhappenedo predicting
future actions. For IDSs to fulfill their desiredrole, they
mustbe ableto analyzethe actionsof a hacket, infer the
hackersgoals,and makepredictionsabouttheir future ac-
tions. In theartificial intelligence(Al) literaturethis process
of deducinganagentsgoalsfrom obsenedactionsis called
planrecognitionor tasktracking.We amguethatplanrecog-
nition mustbe a centralcomponentn future IDSs.

However, mostexisting Al literatureon intent recogni-
tion makesa numberof assumptiongreventingits applica-
tion to the computemetworksecuritydomain.In our previ-
ouswork[8] we have describednapproacho planrecogni-
tion thatdoesnot maketherestrictve assumptionsf other
Al intentrecognitionsystems.In this paperwe discussts
applicationto the networksecuritydomain.

Otherwork in networksecurityhasarguedfor network
level coordinationamonglDSs[1, 6] and even referenced
infering attackerintent[9] asa motovation for this. How-
ever, thesepapershave focusedon the protocolsand com-

I\We apologizefor the useof the term “hacker” in its criminal sense,
but we will usethis asa corventshorthandin this paper

municationissuessurroundingthis kind of distributed co-
ordination. In contrast,this paperfocuseson the needfor
and applicationof Al researchin plan recognitionto the
problemsof networksecurityandthe inferenceof attacker
intent.

Theremainderof this paperhasthe following structure.
First, we will amue that plan recognitionis a crucial ad-
dition to network securitywork. Secondwe will provide
an overview of previous work in plan recognition. Third
we will describeour implementedheory of planrecogni-
tion for hostileagentsor a computemetworksecuritydo-
main. After presentingthe formalization,we provide an
example,shaving how thetheoryis usedandhow it differs
from previousapproachesThenwe concludewith remarks
andplansfor futurework.

2. The Need for Plan Recognition

CurrentIDSsdo not predictattacksthey do not provide
anearlywarning. They reportthetype andpropertief an
attackafterit hashappenedAs suchthesesystemareoften
reducedo therole of postmortemanalysisratherthanbe-
ing proactie. While recognitionof attacksis animportant
ability, it falls shortof the communitys vision for IDSs as
systemghatpredictfuturehackeractionsandautomatically
andcorrectlyrespondo attacksn atimely manner

To beproactive IDSsmustbeableto infer thegoalsof at-
tackers.ldentifyingtheattackds not sufficient. To seethis,
considerthe caseof an DS reportof a synflood. For the
purposef this exampleassumehat the attackerit using
this synfloodfor oneof two reasons.

1. DOSattackto preventouruseof themachine.

2. Suppressinghostduringan|P spoofingattackonan-
othermachine.

To correctlyrespondo this attackanIDS needso un-
derstandhe intent of the attacker predictthe next actions
of theattackerandthentakeactionsto preventthesefuture



actions.To seethis, considereachof the possibleintentsin
turn.

First, supposehe attackeris usingthe synfloodto pre-
ventour useof the machine.Knowing this, we would pre-
dict thattheattackers futureactionswill beto continuethe
flood of SYN packetgo suppresshe machine.To respond
to this attackwe canmodify the firewall to rejectpackets
from the attackinghostor to only allow a specifiednum-
ber of connectiondrom the attackinghostto the DOSed
machine.Thisis will effectively limit the numberof open
connectiongndpreventthe DOS attack.

Secondsuppose¢heattacketis usingthesynfloodaspart
of anlP spoofingattackandhis goalis accesdo a different
machineentirely Knowing this we would predictthat we
would seepacketsthat appearto originate from the sup-
pressedost,we might seethe synfloodstoponits own and
possiblythe establishmemf a connectiorfrom outsidethe
networkto anotherhoston the network (one the original
hosttrusted). To respondto this attackwe shouldmodify
the firewall to prevent all external connectiongo all ma-
chinesthattrustthe synfloodedmachine.

Noticethatwhile thereportedactionis thesamethecor
rectresponsés completelydifferent.In facttheresponsén
thefirst casewill have no effectif the attacker$ goalis ac-
cessto anothemachine.By the time thefirewall hasbeen
modifiedandthe synfloodclearsthe IP spoofingattackwill
have beenexecutedandtheattackemill likely alreadyhave
accesgo the machine.Corverselyif the attackergealin-
tentis justto DOSthe selectechost,respondingasthough
an IP spoofingattackis underwaywill cut off connections
to othermachinedrom theinternet.In short,inferring that
theattackersgoalis “accesdo thesystem’ratherthan“de-
nial of services'’is critical in bothmakingpredictionsabout
whattheattackemwill do next andtakingthe correctcoun-
termeasures.

What we are suggestings that IDSs needto combine
multiple reportsand informationto identify the attackers
goals. In this case,thereis a convenientclue to the at-
tackers intent: partof an P spoofingattackis the sending
of packetgo a hostwith the IP addresof the DOSedhost.
GivenanetworkbasedDS thatcanwatchfor theseanoma-
louspacketsrecognizinghesynfloodasa DOSversugart
of anIP spoofis relatively easy Corverselyif no spoofed
packeis obseredtheattackeis likely engagingn asimple
DOS.

Thisexampleillustrateshekind of reasoninghatwe are
adwcating.By takingthe outputreportsof currentiDSsas
a streamof obsened actions,and usingintentrecognition
techniquesijt is possibleto infer the attackers goalsand
thusaccuratelydirect responsesHowever this simplede-
scriptionpaintstoo rosy a picture. Previous work on intent
recognitionhasmadea numberof simplifying assumptions
thatwould preventits applicationto this domain.In thefol-

lowing sectionwe will discusstheseassumptionsndthe
requirementplacedonplanrecognitionsystemsy thenet-
work securitydomain.

3. Requirementson Plan Recognition

Therequirementshatareplacedon ourplanrecognition
systemcomefrom two differentaspectof the networkin-
trusiondetectionproblem.First, we areattemptingo infer
theplansof covert agents As we alreadyknow hackersf-
ten takedeliberateactionsto “cover their tracks” and hide
their actionsandintentions. This will placesignificantre-
guirementon the processof plan recognitionthat are not
truewhentheagentbeingobsenedis cooperatie.

Second,taking plan recognitionin the computersecu-
rity domainseriouslyrequiresconfrontinga numberof is-
suesthat have not beenexaminedin more theoreticalor
academiaomains. In this case the plansthe hackersare
following have propertiesthat are not as prevalentin the
domainghathave beenthetraditionalareador planrecog-
nition. In the following sectionswe will considerthe re-
guirementplacedon an effective plan recognitionsystem
by thesefactorsin turn. In eachcasewe will identify there-
guirementandattemptto provide a motivatingexamplefor
it.

3.1. Hostile agents

Most previouswork in planrecognitionhasassumedao-
operatve agents. This domainmakesthis assumptiorun-
tenable We have identifiedthetwo significantrequirements
thathostileagentsgplaceon planrecognition. They arethe
ability to infer unobsered actionsfrom obsered actions
andinferringunobseredactionsfrom obsenrationsof state
changeNe discusghesein turn.

Unobserved actions: Given that hackersmay be us-
ing new exploits, it is entirely possiblethatthey may have
actionsthat our currentIDSs do not recognize. Consider
a corventional signaturedetectorwhenfacedwith an un-
known exploit. Sinceit doesnt have the signaturefor the
attackit will not report. In somecasesgven small varia-
tions of an exploit canmakean attackinvisible to a signa-
turedetector

Furtherin real networksthere are often “holes” in the
IDSs coverage. Thatis, hoststhat do not have sufiicient
sensorcoverageto detectall of the maliciousactvities that
might occur on the system. Hackersenteringa system
throughone of thesesensorholeswill not be obsered by
thesystem$ IDSs.

If our planrecognitionsystemis to be successfuin this
domain,it mustbe ableto infer the occurrenceof actions
thatit hasno reportof whenotherevidencesuggestshey
have occurred. Considerthe caseof an attackon a single



machinethatis obseredwithoutary preliminaryscanning.
Sincewe know thatidentifying the IP addressandrelevant
portnumbersareimportantfor this attack ,we caninfer that

somescanningor information-gatheringaction musthave

occurredbeforethe attack,eventhoughwe did not obsere

it.

Observations of state changes. Considetthe reportof
anew servicerunningon a host. Note that we distinguish
betweera reportof the actionof startingthe serviceanda
reportthatthe serviceis now runningandit previously was
not. The first reportwould be generatedy a hostbased
IDS thatwatchedhe hackerstartthe service. Thereportof
a statechangemight be generatedy a networkbasedDS
thatscango identify thatnounauthorizedervicesarebeing
run. In thefirst casewe seetheactionandin the secondve
only obseretheeffectof theaction;wereceve areportof a
statechange Fromthis statechangewe caninfer thatthere
wasanactionthatcausedt.

Existing work hasnot examinedthe issueof reportsof
statechangesin the caseof cooperatie agentghereis no
need.If the agentis cooperatre we canassumeve have a
completdist of theagentsactions.Thereis noreasorto in-
fer the executionof unobseredactionsfrom statechanges;
the completeset of actionsis alreadyavailable. However
with anincompleterecordof the agents actions reportsof
statechangecanprovide evidenceof unobseredactions.

3.2. Real World Computer Security

Therearea numberof requirementghat we will place
on our plan recognitionas a result of concernsthat plan
recognitionbe incorporatednto deployablelDSs. These
requirementsncludethe ability to reasonabout: partially
orderedplans, multiple concurrentgoals,actionsusedfor
multiple effects, failing to obsere an action, the effect of
world stateon theattackerplans,andmultiple possiblehy-
pothesesWe considereachof thesein turn.

Partially ordered plans: The planshackerdollow are
oftenveryflexible in the orderingof their planssteps.Con-
sider systemscanningby IP-sweepingand port scanning.
Thesestepscanbeinterlearedin at leasttwo orders.

1. Collecta large numberof IP addresseandthen port
sweepingachof them.

2. PortsweepeachlP addresssit is found.

While portsweepinghostcanonly bedoneafterthehost's
IP addres$asbeenidentified,thereareno otherconstraints
ontheorderof theactions.Thismeanghattheeportsweep
actionsfor asubdomairarenotorderedvith respecto each
otherbut only with respecto the IP addressliscosery pro-
cess. In short, the port sweepactionscan be executedin
mary acceptablerderings.

In the Al planningandplanrecognitionliterature,plans
that have this kind of flexible orderingbetweenthe plan
stepsarecalledpartially ordered plans In thesecasesthe
orderingconstraint®f theplanonly establishapartialorder
over the actionsof the plan. In contrastwhenthe ordering
constraintamposea total order on the actionsof the plan
we call thisatotally orderedplan.

Sincethe plansthat are followed by the attackershave
this more flexible, partially orderedstructure,we will re-
quirethatour systembeableto recognize¢he multiple pos-
sibleinstantiationorderingscreatedy theseplans.

Multiple concurrent goals: Hackersoften have multi-
ple goals. Thatis, a hackermight be interestedn stealing
your sensitie corporatedataaswell asusingyour comput-
ersto launchattacksagainstothertargets. Much previous
work in planrecognitionhaslookedfor thesinglegoalthat
bestexplains all the obsenrations. In contrastwe will re-
quire that our plan recognitionsystembe ableto consider
casewheretheagenthasmultiple goals.

Actions used for multiple effects: Oftenin the com-
putersecuritydomaina singleactioncanbe usedfor mul-
tiple effects. Considerthe scanningof a subdomain.This
information canbe usedboth for a DOS attackaswell as
to identify the web sener that hackerwantsto deface. In
this casejt is not necessarjor theattackerto performthis
samescanfor eachgoal; they cando it oncefor both. In
effectthey “overload”thescanningactionanduseit to con-
tributeto multiple goals.A critical requirementor our plan
recognitionsystemis thatit beableto handlethesekinds of
actions.

Failure to observe: Supposeve obsere a scanningof
our subnetwork.The longerthe we go without seeingary
further actvity, the morelikely we areto believe thatthis
was just an isolatedscanningevent. It wasnot part of a
larger plan. However, if right after the scanningevent, we
seeothermaliciousactiity thenwe aremorelikely to be-
lieve thescanis thereconnaissanceepof aplan.

In this case sincewe areexpectingto seemaliciousac-
tivity following the scan,whenwe don' seeit, we change
ourbeliefin thelikelihoodthatthescanwaspartof anattack
andinsteadattributeit to a “random” scan.More formally,
the failure to obsere actionsthat confirm our hypothesis
resultsin loweringour estimateof how likely we think the
hypothesiss.

Considethecaseof anIDS thatis 99%effective atiden-
tifying aparticularexploit. Onthebasisof this veryreliable
detectorwe canmakea numberof inferences.One of the
mostimportantis thatif we don't receve areportfrom the
detectorthenit is very unlikely that the attackerhasexe-
cutedthisexploit. In generalthereareasignificanthumber
of conclusionghatonecandraw from thefailureto obsere
actionsandwe will requirethatour systembe ableto per
form thiskind of reasoning.



Our previous commitmentto consideringagentswith
multiple concurrentgoalsmakesit even more critical that
ourplanrecognitiorsystenbeableto engagen thiskind of
reasoninglt is rarethatwe will be providedwith definitive
evidencethatan attackelis not pursinga specificgoal. Far
morelikely is thata lack of evidencefor the goalwill lower
its probability. As a result, reasoningon the basisof the
“failure to obsenre” is critical for a planrecognitionsystem
to preferthoseexplanationswherethe agentis pursuinga
singlegoalover thosewheretheattackethasmultiple goals
but hasnot performedary of the actionsfor oneof them.

Impact of world state on adopted plans. World state
can have significantimpacton the goalsthat are adopted
by an attacker Considerthe caseof a computernetwork
securityfirm thathasnotlockeddown its publicweb-serer
outsideits firewall. Whenan attackerseesthis we would
hardly find it surprisingif they adoptthe goal of defacing
thefirm’sweb-pageln generalsituationafactorscanhave
a significanteffect on the goalsadoptedby agentsin ary
real world domain. We will requireour plan recognition
algorithmbeableto handletheseeffects.

Consideration of multiple possible hypotheses: Pro-
viding a singleexplanationfor the obseredactionsin gen-
eralis notgoingto beashelpfulasrankingthepossibilities.
Considethe casewhereall we obsereis scanningactivity.
Whilethisindicatesahackelis interestedn our network,by
itself it providesvery little evidenceaboutthe hackersin-
tent. Ratherthangiving just oneof the mary equallylikely
answerst is muchmorehelpful to reportthe relative like-
lihood of eachof the possibilities. This providesthe in-
formationthattherearemultiple equallylikely hypotheses
to explain the obsenationsratherthana singlemostlikely
one.

Fromhereon, our discussiorof issuesandsolutionswill
be helpedby a specificmotivatingexample. Thereforethe
following sectionwill provide a brief introductionto our
planrepresentatioandanexampleplanlibrary thatwe will
usefor theremaindeiof the paper Following thisintroduc-
tory materialwe will discusssomebackgroundnformation
on the existing Al work in plan recognitionand whereit
hasmet the requirementave have specifiedand whereit
hasfailed.

4. Plans

In this paperwe usesimplehierarchicaltaskdecompo-
sition) plans[g, as mostplan recognitionwork does. We
assumehatagentshave aplanlibrary thatprovidesrecipes
for achieying goals. Figure 1 shavs a plan library for a
“hacker”in a simplified computemetworkintrusionexam-
ple.

If a hackerhasa goallike stealinginformationfrom a
computer(theft), the planlibrary breaksthatgoalinto five

steps scanthe systemto determinevulnerabilities(recon),

exploit the systems weaknesse® gain entry (break-in),

escalateprivileges(gain-root), export desireddata(steal),

andhide tracesof presenceon computer(clean). Order

ing constraintsvithin a methodarerepresentedly directed
arcs.For example thehackemustbreak-in beforeshecan
gain-root.

Finally, noticethatthereis a condition/eventthatis tied
to the action clean. The dashedline representghe fact
thatthis conditionresultsfrom the executionof the action.
Thus,if clean is executedt will resultin deletedeventlogs
(deleted-logs). This information aboutaction effects will
becritical to inferring the executionof unobseredactions.

5. Plan recognition background

Planrecognitionis the processf inferring the goalsof
an agentfrom obsenrationsof an agents actions. Cohen,
PerrauliandAllen [4] distinguishbetweertwo kindsof plan
recognition keyholeandintendedplanrecognition.In key-
holerecognition therecognizets simply watchingnormal
actionsof anagent.Theagentdoesnot careor is notaware
thattheir actionsarebeingobsered. They aresimply en-
gagingin thetask. In intendedrecognition the agentis co-
operatve; its actionsare donewith the intentthatthey be
understoodThis mayresultin theagentperformingtheac-
tion in a particularor stylizedway in an effort to assistthe
recognizerin thetask. Intendedrecognitionarises for ex-
ample,in cooperatie problem-solvingandin understand-
ing indirect speechacts. In thesecasesrecognizingthe
intentionsof the agentallows us to provide assistancer
respondappropriately

From thesetwo kinds we distinguishadversarial plan
recognition.It arisesin contexts like networksecurity mil-
itary intelligenceandgame-playingwherethe agentis ac-
tively hostileto the obsenation of their actionsandthein-
ferenceof their plans. As we have pointedout already ad-
versarialplanrecognitionrequiregheviolationof anumber
of assumptionshat arereasonablén the casef keyhole
andintendedplanrecognition.

Theearliestwork in planrecognition(e.g.,[15, 19]) was
rule-basedresearcherattemptedo comeupwith inference
rulesthatwould capturethe natureof planrecognition. To
the bestof our knowledge,Charniak3] wasthefirst to ar
guethatplanrecognitionwasbestunderstoodsa specific
form of the generalproblemof abduction or reasoningo
thebestexplanation.Abduction,asopposedo deductioror
induction,is reasoningrom “A impliesB” andknowledge
of “B” todeducé'A". Thisisthereasoningatternfor most
kindsof diagnosis.

In 1986, Kautz and Allen (K&A) published“General-
izedPlanRecognitior?, [12]. Thiswork hasframedalmost
all subsequeniork in planrecognition.K&A definedthe
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Figure 1. A hierarchical plan library in diagram form.

problemasthe problemof identifying a minimal setof top-
level actionssufiicient to explain the set of obsered ac-
tions.

Planswere representedn a plan graph,with top-level
actionsas root nodesand otheractionsas nodesimplying
thetop-level actions.To a first approximationthe problem
of planrecognitionwasthena problemof graphcovering.
They treatedthe problemasoneof computingminimal ex-
planationsjn the form of vertex covers,of the plangraph.
They formalizedthis in termsof McCarthy's circumscrip-
tion.

For example,if oneobsenedrecon (SeeFigurel) the
threeminimal explanationsvould be:

(theft) v (vandalism) Vv (info)
Noticethat,with only this obsenationwe have no evidence
to rule out the possibilitythatthe agenthasmultiple goals.
This singleactioncouldalsoexplain two or eventhreetop-
level goalslike:

(theft A vandalism)

or

(theft A vandalism A info)

However, K&A insistenceon a minimal setof top-level ac-
tions preventsthe consideratiorof thesepossibilities.Even
if they areequallylikely. This violatesour requiremenbf
theability to supportmultiple concurrengoalsandthecon-
siderationof multiple possiblehypotheses.
Anotherproblemfor the useof K&A's approachn the
networksecuritydomainis thatit doesnottakeinto account
differencesin the a priori likelihood of different plans.
Charniakand Goldman(C&G) [2] arguedthat, sinceplan
recognitioninvolves abduction,it could bestbe done as

probabilistic(Bayesianjnference Bayesiarinferencesup-
portsthepreferencdor minimal explanationsjn thecaseof

hypotheseshatareequallylikely (asin the previous case.)
However, it alsocorrectlyhandlesxplanationf thesame
compleity but differentlikelihoods.For example,it is pos-
siblefor alegitimateuserto adda .rhostsfile to a long dor-

mantaccountput it is far morelikely thatwe have hadan

intrusion.

Two planrecognitionsituationsthat are not handledby
eitherK&A or C&G aretheproblemsof influencedromthe
stateof theworld andevidencefrom failure to obsere ac-
tions. As we discussn Section3 the stateof theworld will
influencean agents decisionto pursueplans. K&A could
nottakethisinto accountpecausehey did notconsidetthe
relative likelihood of plans. Evenfor C&G, however, it is
not simple to take this into account,becausehey defined
their probability distributionsover the planlibrary.

The problemof evidencefrom failure to obsere is a
more comple one. Considerwhat would happenif one
obsened recon and break-in. Assumingthat they were
equallylikely a priori, onewould concludethateithertheft
or vandalism were equally good explanations(see Fig-
urel). However, astimewentby andonesaw otheractions,
withoutseeingnod-webpage, onewould becomemoreand
more certainthattheft wasthe right explanation. Systems
like thoseof C&G andK&A, arenot capableof reasoning
like this, becausehey donot considemplanrecognitionasa
problemthatevolvesover time. They cannotrepresenthe
factthatanactionhasnotbeenobseredyet They canonly
besilentaboutwhetheranactionhasoccurred— whichjust
meanghatthesystenhasfailedto noticetheaction,notthat
theactionhasnt occurred— or asserthatanactionhasnot
andwill notoccut

Vilain [17] presenteda theory of plan recognitionas
parsing,basedon K&A'’s theory? Vilain doesnot actually

2Thiswasnotthefirst attemptto castplanrecognitionasparsing[16].



proposeparsingasa solutionto the plan recognitionprob-
lem. Instead he usesthereductionof limited casesf plan
recognitionto parsingin orderto investigatethe complex-
ity of K&A’stheory The major problemwith parsingasa
modelof planrecognitionis thatit doesnot treatpartially-
orderedplansor interleared planswell. Indeed,partial or-
dering (clean andgain-root canbe donein ary order as
long asbreak-in is donefirst), would causeanexplosionin
thesizeof Vilain'sgrammars.

There are grammaticalformalisms that are powerful
enougho capturdanterleaving. However, thecentraladwan-
tageof parsingasamodelis thatit admitsof efficientimple-
mentationwhenrestrictedio context-free languagesThere
are context-free parsingalgorithmsthat are O(n?3) which
would makefor very efficient planrecognition.However if
we increasehe power of the grammarto admitinterleaved
planstheseefficient algorithmsare no longer available to
us.

More recently WellmanandPynadat{W&P) [18] have
proposed planrecognitionmethodthatis both probabilis-
tic and basedon parsing. W&P representplan libraries
asprobabilisticcontext-freegrammargPCFGs)andextract
Bayesnetworksfrom the PCFGsto interpretobsenation
sequences.

Unfortunatelythis approactsuffersfrom the samdimi-
tationson planinterleaving asVilain’s. W&P proposethat
probabilistic contet-sensitivegrammars(PCSGs)might
overcomethis problem,but it is difficult to definea prob-
ability distributionfor aPCSG[14].

Huber et. al. [10] presentan approachto keyhole plan
recognitionfor coordinatingteamsof agentsbasedon the
ProceduraReasoningsystem(PRS)[711]. PRSis a plan-
ning architecturethat useshierarchicalplan specifications
very similarto our planlibrary andareactve executionen-
gineto allow the systendesigneto build agentghatfollow
thespecifiedplans.

Huber’s algorithm automaticallygenerateplan recog-
nition belief networksfrom PRSplan specifications.The
mostimportantdifferencebetweenour work andtheirsis
thatwe obtaina simplerstructureby working with the plan
representatiomlirectly, insteadof generatinga belief net-
work as an intermediaterepresentation.Further it is not
clearhow they handletheinterleaving of multiple plansand
thedevelopmenif plansovertime.

In the following sectionwe will describeour previous
work (GG&M)[8] on plan recognitionand someadditions
to it thatweremadefor the networksecuritydomain. The
central motivations for our previous work are the same
shortcomingsn previousplanrecognitionsystemave have
pointedoutin this sectionnamely:

¢ partially-ordereglansandplaninterlearing;

e multiple concurrengoals;

¢ actionsusedfor multiple effects;

¢ evidencefrom thefailureto obsere expectedactions;
¢ contetualinfluenceon planchoice;

¢ consideratiorof multiple possiblenypotheses

In the following section,we will provide a brief overvien

of our systenthathandlegsheseconcernandthenturnto a
discussiorof how to handletheissuegaisedby adersarial
planrecognition.

6. Recognition based on execution

Theplanrecognitionframevork developedin GG&M is
basedntherealizationthatplansareexecuteddynamically
andthatatary givenmomenttheagentis ableto chooseo
executeary of theactionsthathave beenenabledy its pre-
viousactions.Thus,atary time anagentwill have a pend-
ing setof actionsthat areenabledby its previous actions.
The agentis freeto chooseo executeary of theactionsin
thecurrentpendingset.

To formalize this slightly, initially the executingagent
hasa setof goalsandchoosesa setof plansto executeto
achieve thesegoals.The setof planschoserdetermineshe
setof pendingprimitive actions. As the episodeproceeds,
theagenwill repeatedlyxecuteoneof thependingactions,
andgeneratea new setof pendingactionsfrom which fur-
theractionswill bechosen.

The new pendingsetis generatedrom the previous set
by removing the actionjust executedandaddingnewly en-
abledactions.Actionsbecomeenabledvhentheirrequired
predecessorare completed. This processs illustratedin
Figure2. To provide someintuition, the sequencef pend-
ing setscanbe seenasa Markov chain, andthe addition
of theactionexecutionswith unobseredactionsmakest a
hiddenMarkov model.

To usethis modelto performprobabilisticplanrecogni-
tion, we usethe obsenrationsof the agents actionsas an
executiontrace.By steppingorwardthroughthetrace,and
hypothesizinggoalsthe agentmay have, we can generate
the agents resultingpendingsets. Oncewe have reached
theendof theexecutiontracewe will have thecompleteset
of pendingsetsthatareconsistentith theobseredactions
andthesetsof hypothesizegoalsthatgowith eachof these
sets.Oncewe have this setwe establisha probability distri-
bution overit. We canthendeterminewhich of thepossible
goalstheagentis mostlikely pursuing.

Notice that the obsenations of the agents actionsare
usedto constructhe executiontraces.In thecaseof hostile
agentsthe obsenrationswill not, in generalpe acomplete
recordof the executiontrace.Insteadt will benecessaryo
considerexecutiontracescontainingunobseredactions.
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Figure 2. Generation

Thistheorywasdesignedo handle:partially orderedac-
tions, overloadedactions,the effectsof contet, andnega-
tive evidencefrom notobservingactions(i.e. thedogdidn’t
bark). While someof theseproblemsarepartially handled
by othersystemsno othersystemhandlesall of them. We
referthereaderto GG&M for acompletediscussiorof this
formalism.We will now considerextendingthis formalism
to the problemspresentedby hostileagents.

7. Problemswith hostile agents

Existingwork onplanrecognitiorhasassumedomplete
obsenability of theagentsactions.Takingadwersarialplan
recognitionseriouslymeansthatwe canno longerrely on
this. Thatis, we wantto infer the goalsof anagentgiven
thatthe behaior of the agentis only partially obserable.
Earlier we pointedout requirement®n systemghat want
to move away from this assumption. They mustbe able
to infer unobseredactionsfrom obseredactionsandthey
mustbeableto inferunobseredactionsfrom statechanges.

Therestof this paperwill be organizedasfollows, first
we will discusshow we have addedthesetwo kindsof rea-
soningto oursystemWethendiscusurgenerahlgorithm
for planinference,andwe will concludewith a discussion
of theassumptionandlimitationsof thealgorithm.

7.1. Inferring unobser ved actions from observed
actions

Considetthefollowing obsenations:
(gain-root,mod-webpage)
Thesetwo obsenationsindicatewith very high probability

thatthehackeris engagedn bothstealingnformationfrom
a computeranddefacinga webpage We canconcludethis

happen
(?A,,2)

C970570-01

of pending sets.

becaus¢heseactionsarememberf disjoint plans thatis,
no singleroot goalwill explain both of theseactions.

However theseactionsare even more informative since
they arebothunenabledy theobseredactions.We define
an unenabledaction is onethat is obsered without hav-
ing first obsenedtheactionsthe planlibrary specifieamust
comebeforeit. In this case the planlibrary specifiesthat
recon andbreak-in mustoccurbeforegain-root or mod-
webpage. Thereforejn orderto explainthesetwo obsena-
tionswe mustassumeheexecutionof atleastoneinstance
of recon andbreak-in each. Thus,thesetwo actionspro-
vide evidenceof two distinctplans:

(recon, break-in, mod-webpage)
and
(recon, break-in, gain-root)

Considerour model of plan recognition. Unenabledac-
tions provide moreinformationfor usto useto reconstruct
theagents actualactionsthanotherobsenations. They re-
quirethatthe actionitself bein the sequencejut they also
provide evidenceof unobsered actions. Considergener
ating the executiontracesneededto producethe pending
setsfor the last example. Not only doesthis setof obser
vationsallow usto pruneout ary executionsequencehat
doesnt containa gain-root, followed sometimelater by
a mod-webpage, but it alsoallows usto ignoreary trace
thatdoesnt have arecon followedby abreak-in preceding
thegain-root. Theseunenabledctionsarevery important
piecesof informationwhenattemptingto infer the plansof
hostileagents.

Notethatin this discussionyve have implicitly assumed
the agentcan performany action without detection,how-
ever in practicethis is not true. Someactionsare simply
harderto hidethanothers.For example the probabilitythat
a personcould conducta port scanof my machinewith-
out my knowledgeis muchhigherthanthe probability that
they could successfullycarry out a denialof serviceattack



againstit without my noticing. In this framework it is triv-
ial to addprobabilitiesaboutthelikelihood of anagentper
forming a specificactionundetected.

7.2. Inferring unobserved actions from state
changes

Often, whenit is possibleto prevent an obserer from
seeingthe performanceof an action, it is not possibleto
preventthe obsenration of the action’s effects. In our net-
work securitydomainconsiderthe clean action;the execu-
tion of the actionmight be hidden,but the deletingthe log
filesis very visible.

Reportsof statechangesanprovide evidenceof unob-
sened actionsthat have the desiredeffect. Fromthemwe
caninfer that the action hasoccurredbeforethe report of
the statechange.Reportsof statechangecanalsoprovide
confirminginformationabouta previously obseredaction.

Considetthefollowing sequencef obsenations:

(recon,break-in,deleted-logs)

Thereportof the deletedeventlogsimpliesanunobsered
clean action. Furtherthe orderingconstraintsn the plan
library imply that it must fall betweenthe execution of
break-in andthe report of deleted-logs. However, if the
sequencef obsenationswere:

(recon, break-in, clean, deleted-logs)

The reportwould provide no extra information sinceit is
consistentwvith the obsened actions. Like acquiring evi-
dencefrom unenabledactionsthesereportsgive morein-
formationabouttheexecutiontraceghatareconsistentvith
theobsenation.

7.3. The solution

The centralideabehindour plan recognitionalgorithm
is theproductionof a probability distribution over the setof
all pendingsets.Thisis generatedisingtheobsenrationsas
anexecutiontraceof the agents actions. Sinceeachpend-
ing setis usedin atleastoneexecutiontrace,we generated
the pendingsetsby steppingthroughobsenrations. In the
caseof cooperatre agentsvith completeandcorrectobser
vationsithis s sufficient.

However, aswe have pointedout, in the caseof hostile
agentswe face a problemwith the executiontraces. We
canno longerassumehat the obsenation streamis com-
plete;it nolongerrepresentshe completeexecutiontrace.
Insteadfor eachsetof obserationswe mustconstructhe
setof possibleexecutiontraces nsertinghypothesizedin-
obsenedactionsto completethem.

For easyimplementationwe have assumed boundon
the numberof unobsered actions. The next sectiondis-
cussesremoving this assumption. Given a finite set of
primitive actions,boundingthe numberof unobsered ac-
tions providesa limit on the lengthand numberof execu-
tion tracesthat mustbe considered.In the worst casewe
only needto considerall executiontraceswhoselengthis
equalto the maximumnumberof unobsered actionsplus
the numberof obsered actions. This soundslike a very
large searchspace however we canprunethis setof exe-
cutiontraceswith the orderingconstraintgprovided by the
obsenations.

Weareonly interestedn executiontracesconsistentvith
the obsenations,thereforeif a sequenceloesnot contain
all the obsered actionsor doesnt obey the orderingcon-
straintsimposedby the sequencer plan library it cannot
generateone of the pendingsetswe are interestedn and
thereforecanbefilteredfrom considerationThe execution
tracescan alsobe filtered to be consistenwith the unob-
sened actionsthat are implied by unenabledactionsand
obsenedstatechanges.

To summarizehen,we handlehostileagentdy extend-
ing theobsenedsequencef actionswith hypothesizedin-
obseredactionsconsistentvith boththe obseredactions,
obsenedstatechangesandtheplangraphto createa setof
possibleexecutiontraces.Thenwe follow the planrecogni-
tion algorithmasbefore.We usethe setof executiontraces
to constructhe pendingsetsandthenthe probability distri-
bution over the setsof hypothesesf goalsandplansimpli-
catedby eachof thetracesandpendingsets.

7.4. Example

The following examplewill illustratethis algorithmat a
high level. Considerthe following setof actionand state
changeobsenationswith a boundof threeunobsered ac-
tions.

(break-in,deleted-logs)

Given theseobsenationsand the boundon unobserable
actions,the algorithm(implementedn Pooles PHA [13])

walks forward throughthe list of obsenations,addingun-

obsenedactionsasrequiredto build a setof consistentx-

ecutiontraces. To explain the given obsenationsrequires
the introductionof two unobsered actions,oneto enable
the actionbreak-in and oneto causethe statechangere-

portedin deleted-logs. The completeprocessesultsin 9

possiblesxecutiontraces.Thefirst:

(recon,break-in,clean,deleted-logs)

is consistenwith theagentnot having executedary further
unobseredactionsbeyondthoserequiredto justify theob-
senations. This traceis only consistentvith the high level
goalsof theft or vandalism.



Therearefour tracesthatare consistentwith the execu-
tion of asecondunobseredrecon actionperformedatvari-
ouspointsin thesequenceTheseracesarenotshovn here,
howeverthey would be consistentvith the goalof pursuing
ary two of thetoplevel goalsconcurrently

Of thefour remainingtraces:

(recon,break-in,gain-root, clean,deleted-logs)
and
(recon,break-in,clean,deleted-logs,gain-root)

areconsistenbnly with thegoalof theft. Notetheordering
differencesdueto the partial orderingin the plan library.
Thefinal two executiontraces:

(recon,break-in,mod-webpage,clean,deleted-logs)
and
(recon,break-in,clean,deleted-logs,mod-webpage)

areconsistenbnly with thegoalof vandalism. Again, note
the orderingdifferencesdueto the partial orderingin the
planlibrary.

In constructinghis setof possibleexecutiontracesPHA
hasalreadyestablisheda probability distribution over the
explanationsand establisheshe mostlikely goal. In this
case,sincethe numberof explanationsfor theft andvan-
dalism areequalandthereareno ernvironmentafactorsthat
would weighin favor of oneover the othet thesegoalsare
equallylikely. Theconjunctie plansof theft or vandalism
with info is amuchlesslikely third alternatve.

7.5. Assumptions

In our implementatiorof this algorithmwe have made
two assumptionaboutthe obserationstream:

1. Thereis afixedandknown upperboundonthenumber
of unobseredactions.
2. Thegivenobsenationsaretrueandcorrectlyordered.

Neitherof theseassumptionss strictly necessaryWe will
considereachof themin turn.

Boundingthenumberof possibleunobseredactionsen-
ablesreasoningaboutwherethe agentcould bein the exe-
cution of its plans. Supposewne boundthe numberof un-
obseredactionsat two, andwe obsene a break-in action.
This obsenationis not consistentvith the agenthaving al-
readyexecutedsteal. We have seeroneactionandtheagent
may have executedtwo more unobsered. The agentcan
have executeda total of threeactions. Since,steal is the
fourth stepin its plan,theagentcouldnotyethave executed
it.

Thisboundcanberemaovedfrom thealgorithmin anum-
berof waysincluding: runningthealgorithmmultipletimes
with increasingooundsor replacingthe boundwith a prob-
ability distribution over the numberof unobsered actions

andweighingthe executiontracesaccordingly We seede-
terminingthe bestway to remove this limitation asanarea
for futurework.

Second,we assumedhat the obsered actionshappen
and in the order indicatedby the sequence. Thusif we
have a sequenceof three obsenations: recon, break-in,
and gain-root, we know recon happenedoefore break-
in which happenedeforegain-root. The obsenation se-
guencesrenot assumedo becompletethereforewe cant
concludeclean didn’t happerbetweenbreak-in andgain-
root or evenaftergain-root. However, orderingconstraints
providedby theplanlibrary allow usto rule outsomepossi-
bilities. For example theorderingconstraintallow uscon-
cludethatif clean did occurunobseredit couldnt have
occurredbeforethe break-in unlesstherewere an earlier
unobservedbreak-in.

This assumptiormeanswe neednot questionthe valid-
ity of obsenations. However, in environmentswith hostile
agentsthisassumptiomustbequestionedConsidelamil-
itary example,if we receve areportof troopsmassingat a
particularlocation,we mustfirst determinethe validity of
thereportbeforeconsideringhe effect this would have on
ourassessmetmf theenemys goals.It is however straight-
forwardto complicatethe modelby including a traditional
modelof noisyobsenations.

8. Conclusions

In this paperwe have amuedfor extendinglDSswith a
probabilisticmodelof planrecognition.We have identified
mary requirementghat are placedon the processof plan
recognitiorby thenetworksecuritydomainandhave shavn
how our modelof planrecognitionbasedn planexecution
meetstheserequirementsTheseextensionsremove a ma-
jor assumptiorof previousresearchn planrecognitionand
significantlybroadenghe domainswhereplan recognition
canbeapplied.

In futurework we areinterestedn moreadvancedorms
of misdirection.Our currentmodelstill doesnot provide a
facility to representhat an agentmay be engagingin ac-
tions solely to misleadthe obserer. Our modelcurrently
mustconcludethatthe agentdoesin factintendto perform
the actionsfor the specifiedgoal. In a sensehis s correct;
theagentdoesintendthe actionsbut not the resultinggoal.
The agentonly intendsto misleadthe obserer ratherthan
achieve thegoal.

Finally, and perhapsmostimportantly for our domain,
we areinterestedn disambiguatinghe goalsof multiple
agentswithin the sameobsenration stream.Any computer
networkadministratomwould be thrilled if they only hadto
dealwith a singlehackerat a time, however this is simply
notthecase.For ourwork to betruly usefulin this domain
we mustbe ableto disambiguatenultiple agentsthat may



beworking togetheror separately
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