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Abstract

Previous work on the YAPPR plan recognition system pro-
vided algorithms for translating conventional HTN plan li-
braries into lexicalized grammars and treated the problem of
plan recognition as one of parsing. To produce these gram-
mars required a fixed bound for any loops within the grammar
and a presented a problem for optional actions within HTN
plans. In this work we show that well known transformations
from formal language theory can be used to rewrite the plan
grammars to remove these limitations on the plan libraries.

Introduction
Plan Recognition is generally defined as the problem of in-
ferring which plans, from a given plan library, an agent is
executing based on observations of their actions. Many of
the representations used for plan recognition are relatively
impoverished and do not support complex control structures
like looping and optional actions. However, plans that use
these structures are common in the real world and there-
fore we must provide algorithms capable of recognizing
them. Some prior work in this area has been based on rep-
resenting the plans to be recognized with a formal gram-
mar (we will call these plan grammars) and using parsing
to construct explanations for the observed actions in much
the same way that natural languages are parsed for under-
standing(Carberry 1990; Geib, Goldman, and Maraist 2008;
Pynadath and Wellman 2000). However, this work failed to
highlight some of the results from previous work in formal
grammar rewriting and compiler theory. These results allow
a straightforward rewriting of the plan grammars to enable
the recognition of loops and optional actions with no addi-
tional machinery for the plan recognition task. Therefore, in
this paper we will discuss the use of these methods to en-
able a specific existing plan recognition system to recognize
plans with loops and optional actions.

Related Work
Graph Based Methods: Many pieces of previous work
(Kautz 1991; Avrahami-Zilberbrand and Kaminka 2005),
did not explicitly discuss the problems of recognizing plans
with optional actions or loops. However systems that viewed
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the problem of plan recognition as graph covering or in-
volved marking elements of a graph require modifications to
the plan graph to handle optional actions or looping. Such
systems will have to include separate elements in the plan
graph for loops of arbitrary length. A naive implementation
of this would require multiple instances of the same plan
with loops of increasing length. Such an approach will have
to bound the depth of the loop in order to stop building the
plan graph. Such systems will also have to include elements
in the plan graph for two different cases for optional actions:
where the action is and where it is not. This is particularly
problematic if the optional action is reasonably high level
and might require duplication of significant portions of the
plan graph.

In contrast, the work of (Huber and Simpson 2004) does
explicitly discuss loops and recognizing loops. However this
work is actually addressing a different problem. It is not ac-
tually recognizing human behavior, but rather trying to rec-
ognize if looping is happening for script construction.

Grammar Based Methods: Some previous work on
grammar based methods (Geib 2006; Geib, Goldman, and
Maraist 2008) do explicitly mention recognizing loops and
optional actions. However, their solution is to formalize the
“unfolding” of the loops we have discussed. While the use of
a grammatical formalism means that they are not required to
build the complete plan graph before beginning to perform
plan recognition, for some cases these systems will be re-
quired to unfold the underlying plan. They build grammat-
ical productions for loops of specified lengths. The num-
ber of iterations of the loop is bounded and the grammar
is unfolded to provide an production for each possible loop
length. This is effectively the same as the naive implemen-
tation we discussed for graph based methods

Activity Recognition and HMMs: Much of the work in
activity recognition is based on discretizing the space into
regions, modeling the transitions between the regions with
an Hidden Markov Models(HMM)(Bui, Venkatesh, and
West 2002) or Conditional Random Fields (CRF)(Hoogs
and Perera 2008; Liao, Fox, and Kautz 2005; Vail and
Veloso 2008) and then using the HMM or CRF to determine
the most likely plan being followed. However this approach
has subtle issues with trajectories that crossed over the same
part of the state-space multiple times. In such a situation,
the Markov assumption can mean that the system is effec-



tively “unaware” that it has even been in this state before.
Thus while the steps of the looping plan can be recognized,
without additional processing, such a plan recognizer will
be unable to tell how many times it had been around a loop.
Loosing this information also means that the kind of nested
loops that are the hallmark of context free grammars are not
supported by HMMs. Distinguishing when a state has been
visited would require significant additions to this approach.

Thus, both looping and optional actions have presented
problems for previous work in plan recognition. As we will
see, basing our plan recognition on parsing will allow us to
use results and algorithms from formal grammar theory to
rewrite our grammars. This will enable existing plan recog-
nition machinery to handle loops and plans with optional
actions.

Using Context Free Grammars (CFGs) for
plan grammars

It is uncontroversial that a limited form of Hierarchical Task
Network plans(Ghallab, Nau, and Traverso 2004) can be
represented as Context Free Grammars.(Erol, Hendler, and
Nau 1994). As an example consider, the simple set of plans
for traveling to a conference (GO2CONF) shown in Fig-
ure 1.

GO2CONF!

PACK! T2L! CHECKIN!

PACK!

PACKBRIEF!PACKSUIT!

T2L!

W!

T2L!

T2L! TT! W!

TT!

rideT!

PACKBRIEF!

packB!

PACKSUIT!

packB!

CHECKIN!

talk2C!

W!

walk!

Figure 1: A simple set of Hierarchical Plans

These plans are encoded in the following CFG:
CFG: 1

GO2CONF → PACK,T2L,CHECKIN
PACK → PACKS UIT, PACKBRIEF

T2L→ W | T2L,TT,W
TT → rideT

PACKBRIEF → packb
PACKS UIT → packs
CHECKIN → talk2C

W → walk

We will use a vertical bar to separate alternative rules that
share a common left hand side (consider T2L). For brevity,
we have shortened some of the longer names of the tasks
to create non-terminals for the grammar. In this case: W

is the non-terminal for walking, T2L is the non-terminal for
the task of traveling to a location, TT is the non-terminal
for traveling by train, PACK is the non-terminal that sub-
sumes the two packing tasks of packing a suitcase (PAC-
SUIT) and a briefcase (PACKBRIEF), and CHECKIN is the
non-terminal for checking into the conference. For each of
TT, PACKBRIEF, PACKSUIT, CHECKIN, and W there is
a corresponding terminal that we assume to be observable
in the world. We note all the actions here are totally or-
dered and all of the actions are required for the plan to be
successful. We also note the grammar we have just given
has a structure that exactly mirrors the structure of the HTN.
While this is a very simple set of plans it will be sufficient
for our discussion.

Once a set of plans has been encoded into a CFG the pro-
cess of recognizing a plan is effectively producing the most
likely parse of the observations(Geib, Goldman, and Maraist
2008; Geib 2009). In some situations we can even use the
exact same set of algorithms that are used for natural lan-
guage processing to produce such parses. However, typi-
cal parsing algorithms make a number of assumptions that
make them unsuited to plan recognition. These assumptions
include assuming the agent is only executing a single plan,
all of the agent’s actions are observable, that a complete ex-
ecution of the plan is present, and others. As a result, re-
searchers in plan recognition have often created their own
algorithms for parsing plan grammars rather than using tra-
ditional natural language parsers.

YAPPR Background
Imagine that we take a CFG and for it we produce the set
of left-most, depth-first parse trees. For the grammar in Fig-
ure 1 a subset of the trees that would result from this pro-
cess is shown in Figure 2. Using tree substitution(Joshi and
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Figure 2: Leftmost derivation trees for a subset of the tasks
shown in Figure 1

Schabes 1997), we can combine such trees to parse a set of



observations to produce larger plans for recognition. (Gold-
man, Geib, and Miller 1999; Geib and Goldman 2009).

The YAPPR plan recognition system embraces this kind
of tree grammar based parsing but leverages a further fact.
Since parses are extended by substitution, only the tree’s
frontiers need to be maintained. The action grammar’s
trees can be rewritten as a set of production rules, captur-
ing just the required frontier non-terminals. Parsing can
then be done as a rewriting process that is equivalent to tree
substitution resulting in Plan Frontier Fragment Grammars
(PFFG)(Geib, Goldman, and Maraist 2008).

Definition 1.1 We define a PFFG as a tuple PL =
〈Σ,NT, P〉 where, Σ is a finite set of basic actions or terminal
symbols, NT is a finite set of methods or non-terminal sym-
bols, and P is a set of production rules of the form A, a→ β
where a ∈ Σ, and β is a string of symbols from (Σ ∪ NT )∗.

In the rest of this document non-terminal symbol names will
be written in capitals and terminal symbol names in lower
case. If a given PFFG production has an empty right hand
side, we will denote the right hand side as a period. (Geib,
Goldman, and Maraist 2008) provides a more complex defi-
nition of PFFGs that supports explicit representation of par-
tial ordering within the grammar. For ease of exposition, in
this definition we assume that all partial ordering has been
addressed by explicitly enumerating all of the orderings in
the grammar.

Using a PFFG, parsing is performed by considering the
next observed terminal symbol. For any production for
which the terminal symbol on the left hand side is the same
as the next observation, and the non-terminal on the left-
hand side is present in the current plan frontier, the non-
terminal is removed from the plan frontier and replaced by
the right hand side of the production. Effectively, the non-
terminal on the left hand side can be rewritten as the string
on the right hand side anytime the terminal on the left hand
side is observed. In the case of rules with an empty right
hand side, the non-terminal in question is removed and noth-
ing is put into its place. With this grammar formalism in
hand we return to our discussion of constructing the gram-
mar given an initial CFG for the set of plans to be recog-
nized.

In previous work (Geib and Goldman 2009), we have
shown that to build the complete set of left-most, depth-first
parse trees for arbitrary CFGs requires bounding the number
of times that recursive productions in the original CFG can
be called. Left recursive grammars (like our example gram-
mar) produce infinite, descending, leftward parse trees by
simply recursing. This is a valuable property. This is what
allows our example grammar to recognize plans with an ar-
bitrary number of train legs. The solution to this problem
used in YAPPR is to bound the number of times the recur-
sive productions can be used.

For example, assuming a limit of one recursive step, con-
verting our original grammar to a YAPPR PFFG yields.

PFFG: 1

GO2CONF, packS → PACKBRIEF,T2L,CHECKIN
T2L,walk → . | TT,W | TT,W,TT,W
TT, rideT → .

PACKBRIEF, packB→ .

CHECKIN, talk2C → .

W,walk → .

Note the significant increase in the number of productions
for T2L. Without the bound this would in fact have an in-
finite number of productions. Also note that we can only
recognize plans that involve taking two trains or less. What
about cases where we wanted to take three or even more?
This would require setting a new, higher bound on the recur-
sion depth and building a new PFFG.

As is well known in the computational theory and com-
pilers literature(Hopcroft and Ullman 1979), parsing CFGs
can be made easier by rewriting CFG grammars into normal
forms. Such transformations generally have no effect on the
grammar’s expressiveness, but can have very significant im-
pact on parsing efficiency. One such transformation that can
be performed on a grammar is the removal of left recursion.
Our previous work on YAPPR (Geib, Goldman, and Maraist
2008) limited the expressiveness of the grammars supported
specifically to avoid cases of left recursion. Therefore we
will look at using well-known rewriting methods from CFG
theory to eliminate leftward recursion in the grammar and
allow YAPPR to recognize fully recursive plans and there-
fore arbitrary looping.

Removing Left Recursion
Formal language theorists have show that left recursion
can be removed from a CFG (Hopcroft and Ullman 1979;
Wood 1987). This conversion is based on the insight that
any left recursive production can be changed into a right-
ward recursive rule and an ε-production (a production that
has an empty right hand side). Thus, in general a production
of the form: A→ Aγ | B can be rewritten as the two produc-
tions: A → B | BX; X → ε | γX. Based on this insight and
following the algorithm provided in (Hopcroft and Ullman
1979) our original plan grammar (CFG: 1) can be converted
to the following equivalent grammar:
CFG: 2

GO2CONF → PACK,T2L,CHECKIN
PACK → PACKS UIT, PACKBRIEF

T2L→ W | WX
X → ε | TT,W, X

TT → rideT
PACKBRIEF → packb

PACKS UIT → packs
CHECKIN → talk2C

W → walk

that does not have left recursion. Note the introduction of
the new non-terminal X that encodes the loop. This allows



the grammar to be written as right recursive rather than left
recursive. We refer the interested reader to (Hopcroft and
Ullman 1979) for more details on this algorithm.

Unfortunately, as we see in our example, the removal
of left recursion can introduce ε-productions into the CFG.
This is a problem, as the algorithm for generating PFFGs
does not support ε-productions. Fortunately, the formal
grammar theorists have also found an algorithm for remov-
ing ε-productions from a grammar.

The intuition behind the the ε-production removal is noth-
ing more than multiplying out all the possible alternatives.
The end result of removing them is that we effectively we
include a production for each possible case (with and with-
out the optional action). We again refer the interested reader
to (Hopcroft and Ullman 1979) for details of this algorithm,
but applying this simplification to following this transform
results in the following CFG:

CFG: 3

GO2CONF → PACK,T2L,CHECKIN
PACK → PACKS UIT, PACKBRIEF

T2L→ W | WX
X → TT,W | TT,W, X

TT → rideT
PACKBRIEF → packb

PACKS UIT → packs
CHECKIN → talk2C

W → walk

The critical change to observe here is in the reformulation of
the production for X.

It is worth noting that this transformation on a CFG can
result in a loss of expressiveness. If the empty string was
part of the language described by the original CFG it clearly
cannot be part of the grammar with all ε-productions re-
moved. Thus, the plan grammar can no longer recognize
cases where the agent does nothing. While in formal terms
this is a change does modify the expressiveness of the gram-
mar it is not a significant loss for work done in plan recogni-
tion. It is rare that we want to recognize when an agent has
performed no actions, and in those cases there are generally
much simpler tests that we can perform than executing our
plan recognition algorithms.

Having now removed both left recursion and ε-
productions from the original CFG, we can convert our
CFG:4 into a PFFG for recognition. This results in:

PFFG: 2

GO2CONF, packS → PACKBRIEF,T2L,CHECKIN
T2L,walk → . | X

X, rideT → W | W, X
TT, rideT → .

PACKBRIEF, packB→ .

CHECKIN, talk2C → .

W,walk → .

PFFG: 2 does not have any left recursion. This will allow
us to use the existing YAPPR algorithm to recognize plans
with arbitrary loops. Using the existing CFG simplification
algorithms to first remove leftward recursion and then any ε-
productions in the CFG of the plans to be recognized before
creating a PFFG provides two benefits. First, it allows us to
remove the need for a bound on the grammar in the creation
of PFFGs. Second, it allows the original YAPPR algorithm
to support recognition of plans with arbitrarily deep loops.
We will return later to discuss the computational cost of this.

Optional actions

While we can think of optional actions within a plan as ex-
ceptionally short loops there is a critical difference. We no-
tice in our initial CFG example that while we have a loop
there are no ε-productions. Truly optional actions are either
present or not. This requires ε-productions in the original
grammar.

For example suppose the action of checking into the con-
ference is actually optional. This would result in the follow-
ing CFG:

CFG: 4

GO2CONF → PACK,T2L,CHECKIN
PACK → PACKS UIT, PACKBRIEF

T2L→ W | T2L,TT,W
TT → rideT

PACKBRIEF → packb
PACKS UIT → packs
CHECKIN → ε | talk2C

W → walk

As we have already seen, there are existing algorithms
for rewriting the CFG to removing such optional actions.
Thus, if we invoke the process we have already outlined of
removing left recursion and then removing all ε-productions
we get the following CFG that is equivalent to CFG:4 :

CFG: 5

GO2CONF → PACK,T2L,CHECKIN
GO2CONF → PACK,T2L

PACK → PACKS UIT, PACKBRIEF
T2L→ W | WX

X → TT,W | TT,W, X
TT → rideT

PACKBRIEF → packb
PACKS UIT → packs
CHECKIN → talk2C

W → walk

and CFG:5 results in the following PFFG for recognition:



PFFG: 3

GO2CONF, packS → PACKBRIEF,T2L,CHECKIN |
PACKBRIEF,T2L

T2L,walk → . | X
X, rideT → W | W, X

TT, rideT → .

PACKBRIEF, packB→ .

CHECKIN, talk2C → .

W,walk → .

Thus we have identified algorithmic methods for modify-
ing CFG grammars that allow YAPPR to handle loops and
optional actions.

Relation to GNF
The YAPPR compilation algorithm results in PFFGs that are
similar to Greibach Normal Form (GNF) (Greibach 1965)
Definition 1.2 We define a CFG as being in Greibach Nor-
mal Form(GNF) if every production of the grammar has the
form A→ aβ where A is a non-terminal, a is a terminal and
β is a possibly empty string of non-terminals.

In fact, to convert a CFG to GNF, the two transformations
we have discussed must be performed first. We note that
PFFGs are not as restrictive as GNF, since a PFFG can have
multiple terminals in the right hand side of a rule. Further,
GNFs are often formalized as limiting the right hand side
of a production to a length of three elements (one terminal
and not more than two non-terminals) which we do not do.
While this does not change the expressivity of the grammar
in general it would significantly impact the use of the gram-
mars a PFFGs as it would bound the trees to have at most
two non-terminals on their frontier.

The Probability Model
We have claimed that no changes are needed to the YAPPR
algorithm in order to recognize plans with looping and op-
tional actions. However while the parsing algorithm used by
YAPPR does not need modification, the probability model
used by YAPPR does need modification to correctly capture
the probability of these control structures. YAPPR’s proba-
bility model is given by the following formula:
Definition 1.3

Pr(exp ∧ obs) =

I∏
i=0

Pr(Gi)
n∏

i=1

(Pr(rulei)
n∏

k=1

(1/|ext(AP(expk)|)

where there are n observations.
The first term captures the likelihood of each of the root

goals present in the parse, and needs no modification to han-
dle loops and optional actions. The second term captures
the likelihood of each of the given productions being used
to account for the observed action. This principally captures
the structural assumptions that underlie the particular PFFG
production. The third term captures the likelihood that of

the possible actions, that are enabled by the agent’s previ-
ous actions, the agent chose this particular action next. Both
the second and third terms have previously been modeled
by a uniform distributions across all the possible options (all
of the alternatives were considered equally likely). This as-
sumption is not forced by the model, though. Non-uniform
distributions could be used.

Implicitly both the second and third terms of this formula
include independence assumptions violated by the presence
of looping and optional actions. In the case of the second
term, we would be assuming that all of the possible permu-
tations of the optional actions are equally likely and have the
same likelihood as any other actions that could be done next.
In the case of the third term we would be assuming that at
any given time step the loop was as likely to terminate as to
continue, and again both of these options would be consid-
ered as likely as any other action the agent could perform.
Neither of these assumptions are likely to hold in general.

Conveniently, it is relatively easy to change the probabil-
ity models used by YAPPR. The use of looping and optional
actions strongly argue for using more complex probability
models for the second and third term. Such models should
be conditioned on structural features of the existing plan and
possibly even features of the current world state. The correct
form for these new models is an open problem and area of
active research.

Impact
We note that both the transformation for removing looping,
the removal of ε-productions from the grammar increase
in the size of the resulting grammars. This can have very
significant impact on the run-time of the parsing. Thus,
while we have shown the very nice theoretical result that
the YAPPR algorithm can support looping and optional ac-
tions without changes to the parsing algorithm there is still
a significant question of the practicality of doing so.

As pointed out in (Geib 2004) the chief cost of plan recog-
nition for systems like YAPPR is in the number of possible
parses that must be maintained, and there are a few gener-
alizations that we can draw about the impact of loops and
optional actions on the number of parses that YAPPR will
have to consider.

Relative to the number of parses, lopping inflicts a rela-
tively low cost. YAPPR will be required when in the loop
to maintain two explanations, one for the possibility that the
loop will terminate on the next step and one for the possibil-
ity that the loop will continue. Thus the number of explana-
tions will be doubled. While this can be a significant cost it
is often dwarfed by the costs of optional actions.

As we have seen, dealing with optional actions amounts to
building a new production for each of the possible sequences
of actions that could result from the presence or absence of
the optional actions. For multiple optional actions this re-
sults in an exponential number of productions, and hence
an exponential increase in the number of parses that must
be considered when parsing a task that contains optional ac-
tions. Thus, depending on the number and location of the
optional actions, optional actions can actually have far more
significant impact on the run-time of the YAPPR algorithm.



While we have shown that YAPPR can be used to rec-
ognize plans with loops and optional actions, a significant
amount of empirical evidence should be gathered before
concluding that recognizing plans with these structures can
be be done efficiently enough for any particular application.

Conclusions
Viewing plan recognition as a parsing task allows one to
leverage known results from work on formal grammar pars-
ing. In this paper we have shown specifically how this can
be done for one particular grammar based plan recognition
algorithm. We have shown its relation to existing formal
grammar work and how it can be used to increase the ex-
pressiveness of plan recognition algorithms. While we have
discussed these results in the context of a single plan recog-
nition system, the formal ideas behind it are sufficiently gen-
eral to apply to any plan recognition system that is based on
CFGs and parsing of observations.
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