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Abstract
The research areas of plan recognition and
natural language parsing share many com-
mon features and even algorithms. However,
the dialog between these two disciplines has
not been effective. Specifically, significant
recent results in parsing mildly context sen-
sitive grammars have not been leveraged in
the state of the art plan recognition systems.
This paper will outline the relations between
natural language processing(NLP) and plan
recognition(PR), argue that each of them can
effectively inform the other, and then focus
on key recent research results in NLP and ar-
gue for their applicability to PR.

1 Introduction
Without performing a careful literature search one
could easily imagine that the fields of Plan Recog-
nition(PR) and Natural Language Processing(NLP)
are two separate fields that have little in common.
There are few papers in either discipline that di-
rectly cite work done in the other. While there are
exceptions,[Carberry, 1990; Blaylock and Allen, 2003;
Pynadath and Wellman, 2000; Vilain, 1991], even
these papers often are only citing NLP in passing and
not making use of recent research results.

Interestingly, many researchers do see these two ar-
eas as very related, but are still not taking the recent
lessons learned in one area and applying them to the
other. In an effort to rectify this lack, this paper will
outline the commonalities between PR and NLP, ar-
gue why the results from each of these research areas
should be used to inform the other, and then outline
some recent research results that could inform a uni-
fied view of these two tasks.

2 Commonalities
In this section we will sketch the similarities at the sur-
face and algorithmic levels between PR and NLP be-
fore more formally drawing their representations to-
gether in the Section 3. We will start this process by
laying out some terminology so that we can see the
common parts of NLP and PR.

Both PR and NLP take as input a set of observa-
tions. In PR these are observations of action execu-
tions and in NLP these are individual words or utter-
ances. In both cases, the observations are used to cre-
ate a higher level structure. In NLP these higher level
structures may be parse trees [Collins, 1997] or logi-
cal forms [Bos et al., 2004]. In PR they are usually
a hierarchical plan structure[Kautz and Allen, 1986;
Kaminka et al., 2001; Geib and Goldman, 2003] or at
least a high level root goal[Horvitz et al., 1998]. In
either case, both NLP and PR construct a higher level
knowledge structure that relates the meanings of each
of the individual observations to a meaning for the col-
lection of observations as a whole.

For the purposes of this discussion it will aid us to
abstract away from the specific details of the higher
level structure that is built by this process. To simplify
this discussion we will talk about these systems as if
they were creating an hierarchical data structure that
captures the meaning of the collection of observations.
We will use the PR terminology and call this structure
an explanation and following the NLP terminology call
the process of producing a single explanation parsing.

In order to parse a set of observations into an ex-
planation both PR and NLP must specify the patterns
of observations they are willing to accept or the rules
that govern how the observations can be combined. In
PR this specification is done in the form of a library of
plans, while in NLP this is done through a grammar.
In Section 3 we will argue that there is no significant
distinction between PR plan libraries and NLP gram-
mars. Therefore, in this paper we will call all such
specifications of the rules for acceptable combination
of observations grammars.

With this terminology in place, we can now describe
both NLP and PR as taking in as inputs a set of ob-
servations and a grammar specifying the acceptable
sets of observations. Both NLP and PR then parse
these observations to produce explanations that orga-
nize the observations into a structured representation
of the meaning of the collection.

Given this level similarity, it is not surprising that
grammars in both NLP and PR can result in multiple
explanations for a given set of observations. However,
it is of interest that in both disciplines this ambigu-
ity has been resolved using very similar probabilistic



methods. In both areas, the state of the art methods
are based on weighted model counting. These systems
build the set of possible explanations and establish a
probability distribution over the set in order to deter-
mine the most likely explanation.

The work in NLP often uses probability models de-
rived from an annotated corpus of text[Clark and Cur-
ran, 2004] while the probability models from PR have
been based on Markov models of the world dynamics
[Bui et al., 2002] or probabilistic models of plan exe-
cution [Geib and Goldman, 2003]. While space pro-
hibits a full exposition of these very different proba-
bility models, it is still telling that a weighted model
counting method is the state of the art in both fields.

Beyond these surface and algorithmic similarities
there are psycholinguistic reasons for believing that
PR and NLP are very closely tied process that should
inform one another. For example, consider indirect
speech acts like asking someone “Do you know what
time it is?” To correctly understand and respond to this
question requires both NLP and PR.

Correctly responding requires not merely parsing
the sentence to understand that it is a request about
ones ability to provide a piece of information. It also
requires recognizing that asking the question of some-
one else is the first step in a two part plan for finding
out a piece of information by asking someone else. PR
allows one to conclude that if someone is following
this plan they most likely have the goal of knowing
the piece of information (the current time in this case)
and that providing the desired information will be more
helpful than answering the literal question asked.

Given the similarities between the two areas, it
seems reasonable that work in one area should inform
the other. However important results in each area are
not being leveraged in the other community. In the
next section we will more formally specify the rela-
tion between these two areas to help researchers take
advantage of the results in both areas.

3 Plans as Grammars
Our argument that PR and NLP should inform one an-
other would be significantly strengthened if we could
show, as we have asserted above, that the plan libraries
used by PR systems are equivalent to the grammars
used by NLP systems. In the following section we will
show the parallels between these two constructs and a
mapping between them.

Almost all PR work has been done on traditional
hierarchical plans.1 While much of the work in plan
recognition has not provided formal specifications for
their plan representations they can all generally be seen
as special cases of Hierarchical Task Networks (HTN)
as defined in [Ghallab et al., 2004].

According to Ghallab the actions of an HTN domain
are defined as either operators or methods. An operator
corresponds to an action that can be executed in the
world. Following Ghallab we will define them as a

1See [Bui et al., 2002] for an exception that works on
hierarchical Markov models

triple (n, add − list, delete − list) where n is the name
of the operator, add − list is a list of predicates that are
made true or added to the world by the operator, and
delete − list is the set of predicates that are made false
or deleted from the world by the operator.

A method on the other hand represents a
higher level action and is represented as a 4-tuple
(name,T, {st0, ..., stn},C) such that name is a unique
identifier for the method, T names the higher level ac-
tion this method decomposes, and {st0, ..., stn} identi-
fies the set of sub-tasks that must be performed for the
higher level task to be performed. Finally, C represents
a set of ordering constraints that have to hold between
the subtasks for the method to be effective.

We will draw a parallel between HTNs and con-
text free grammars (CFGs). Following Aho and
Ullman[Aho and Ullman, 1992] we define a CFG, G,
as a 4-tuple G = (N,Σ, P, S ) where

• N is a finite set of nonterminal symbols,

• Σ is a finite set of terminal symbols disjoint from
N,

• P is a set of production rules that have the form
n→ ω where n ∈ N and ω ∈ (Σ ∪ N)∗, and

• S is a distinguished S ∈ N that is the start symbol.

Given these definitions, we would like to map the
plans represented as an HTN into an equivalent CFG.
We first consider the case of a collection of HTN plans
that are totally ordered. That is, we assume that for
every method definition the constraints on the sub-
tasks st0, ..., stn define a total ordering over the sub-
tasks. Without loss of generality, we assume that the
subtasks’ subscripts represent this ordering.

To encode the HTN as a CFG, we first consider the
operators. The processing for these is quite simple.
We identify the names of each operator as a terminal
symbols in our new grammar, and attach the add and
delete lists to the non-terminal as features. Next we
consider mapping the method definitions into produc-
tions within the grammar.

Given a totally ordered method definition, we can
add the task to be decomposed to the set of non-
terminal symbols. Then we define a new produc-
tion rule with this task its left hand side. We then
define the right hand side of the rule as the or-
dered set of subtasks. Thus, the method definition
(name,T, {st0, ..., stn},C) is rewritten as the CFG pro-
duction rule: T → st0, ..., stn and T is added to the set
of non-terminals.

For example, consider the very simple HTN method,
m1 for acquiring shoes:

(m1, acquire(shoes),
{goto(store), choose(shoes), buy(shoes)},
{(1 ≺ 2), (2 ≺ 3)})

where the constraints (1 ≺ 2) indicates the task
goto(store) must precede the task choose(shoes) and
(2 ≺ 3) indicates that choose(shoes) must precede



buy(shoes). This is very easily captured with the CFG
production:

acquire(shoes)→
goto(store), choose(shoes), buy(shoes)

This process of converting each method definition into
a production rule and adding the task to be decom-
posed to the set of non-terminals is repeated for every
method in the HTN to produce the CFG for the plans.
Now we turn to the question of partial ordering.

Limited cases of partial orderness could be handled
in CFGs by expanding the grammar with a production
rules for each possible ordering. However, as the NLP
community has realized this can result in an unaccept-
able increase in the size of the grammar, and the related
runtime of the parsing algorithm[Barton, 1985].

So instead, to address this, the NLP community
has produced a number of different grammar for-
malisms that allow the grammar to separately ex-
press decomposition and ordering. This includes the
work of Shieber on ID/LP grammars [Shieber, 1984],
Nederhof on poms-CFGs [Nederhof et al., 2003], and
Hoffman[Hoffman, 1995] and Baldridge[Baldridge,
2002] on partial orderness in Combinatory Catagorial
Grammars. All of of these are attempts to include
partial orderness within the grammar formalism (and
parsing mechanism) without the exponential increase
in the grammar size and runtime. Since each of these
formalisms use very different representations, rather
than presenting examples, we refer the reader to the
cited papers. It suffices to say that these grammar for-
malisms introduce notational additions to denote par-
tial orderness within the production rules and to ex-
plicitly specify the ordering relations that are required
in each production. These formalisms can be used to
capture HTN plan domains that require partial order-
ing.

It should be clear from this exposition that the gram-
mar formalisms found in the NLP literature are suffi-
cient to cover the method definitions found in most if
not all of the PR literature. However, to the best of
our knowledge no one has used any of the relatively
recent grammar formalisms and their associated pars-
ing machinery for plan recognition. Making use of
these grammatical formalisms would also allow the use
of their associated formal complexity results as well,
something that has often been lacking in the work in
PR.

Thus, we propose that NLP and PR could be uni-
fied by the use of the same underlying grammatical
formalisms for representing the constraints on obser-
vations, and using a common parsing mechanism. In
the case of probabilistic NLP and PR systems, we
believe these systems may need to retaining separate
methods for computing their probability distributions,
however the parsing of observations into explanations
could share a common framework. In the next section
we will advocate a specific class of grammars for this
task.

4 New Grammar Formalisms for PR
Given that researchers in NLP have been working on
the close relationship between grammars, parsers, and
language expressiveness it shouldn’t be a surprise that
results from this work could inform the work in PR.
There are some classes of grammars that are too com-
putationally expensive to parse for real world appli-
cation. For example, the well known complexity re-
sults for parsing context sensitive grammars (CSGs)
have all but ruled them out for NLP work. Likewise
we expect poor performance for applications of CSGs
to PR. Unfortunately, PR researchers have used these
results as a motivation to build their own algorithms
for parsing, often without even considering the limi-
tations of the existing parsing algorithms. Examples
include graph covering[Kautz and Allen, 1986] and
Bayes nets[Bui et al., 2002], that trade one np-hard
problem for another. What has been largely ignored
by the PR community is the NLP work in extending
context free grammars and their efficient parsing algo-
rithms.

Recent work in NLP has expanded the language
hierarchy with grammars that have a complexity
that falls between context free and context sensi-
tive. Examples, include IL/LP Grammars[Shieber,
1984], Tree Adjunction Grammars(TAG)[Joshi
and Schabes, 1997], and Combinatory
Catagorial Grammars(CCG)[Steedman, 2000;
Hockenmaier, 2003; Clark and Curran, 2004]. These
“mildly context sensitive grammars”(MCSGs) have
a number of properties that make them attractive for
NLP including greater expressiveness than CFGs but
still having polynomial algorithms for parsing. These
properties also make them attractive for adoption by
the PR community.

While these grammars are of scientific interest, we
should justify their use, since it is not clear that PR re-
quires grammars that are more expressive than CFGs.
Such a claim would rest on the empirical need for
plans that are not context free. If nothing more than
a CFG is needed for PR, then a well known parsing al-
gorithm like CKY that has a cubic complexity seems
to be the obvious choices for application to PR. How-
ever, if there are PR problems that require recognizing
plans that are not within the class of CFG plans, this
would provide a convincing argument that PR requires
a grammar that is not context free. In the following
we will provide just such an example. While there are
a number of different classes of MCSGs with differ-
ent expressiveness results, and the exploration of all of
them may prove useful for PR research, we will fo-
cus on the subclass of MCSGs that includes CCGs and
TAGs called Linear Index Grammars(LIG).

Steedman[Steedman, 2000] has argued convinc-
ingly that CCGs and other LIGs are able to capture
phenomena beyond CFGs that are essential to real
world language use. Given the parallels we have al-
ready demonstrated between NLP and PR, we argue
that if this class is necessary for NLP it shouldn’t be
surprising to us if this class of grammars captured es-



sential phenomena in PR as well. In this light, Steed-
man shows that CCGs provide for crossing dependen-
cies in NLP, a critical extension that context free gram-
mars cannot capture. Likewise, if we find that such
crossing dependencies are necessary for recognizing
plans we would have a strong argument that PR re-
quires a grammar that is in the MCSG family.

While a full discussion of the handling of crossing
dependencies in CCGs is beyond the scope of this pa-
per, it will be helpful to understand their basic structure
in order to identify them in PR contexts. Crossing de-
pendencies occur when the words that make up a con-
stituent (like a relative clause) are interleaved in the
sentence with the elements of a different constituent.
Steedman[Steedman, 2000] has argued that a particu-
larly strong example of the naturalness of these con-
structs are Dutch verbs like proberen ‘to try’ which al-
low a number of scrambled word orders that that are
outside of the expressiveness of CFGs.

For example the translation of the phrase “... be-
cause I try to teach Jan to sing the song.” has four
possible acceptable orderings [1 - 4] and a fifth that is
more questionable.

1. . . . omdat ik1 Jan2 het lied3 probeer1 te leren2
zingen3.
. . . because I Jan the song try to teach
to sing.

2. . . . omdat ik1 probeer1 Jan2 het lied3 te leren2
zingen3.

3. . . . omdat ik1 probeer1 Jan2 te leren2 het lied3 te
zingen3.

4. . . . omdat ik1 Jan2 probeer1 te leren2 het lied3 te
zingen3.

5. ?. . . omdat ik1 Jan probeer1 het lied te leren zingen

The subscripts are included to show the correspon-
dence of the noun phrases to the verbs. For example
in the first ordering the noun phrases are all introduced
first followed by their verbs in the same order as their
nouns. This produces the maximally crossed ordering
for this sentence.

The realization of these kinds of crossed dependen-
cies in a PR context is relatively straightforward. Its
important to keep in mind the mapping that we are us-
ing between traditional language grammars and plan-
ning grammars will mean that dependencies in PR are
not the same as in NLP. In NLP dependencies are fea-
tures like gender, number or tense that must agree be-
tween different words within the sentence. In the PR
context, dependencies are equivalent to causal links in
traditional nonlinear planning[McAllester and Rosen-
blitt, 1991]. That is, they are states of the world that
are produced by one action and consumed by another.
Therefore, a plan with a crossing dependency would
have the causal structure shown in Figure 1 where in
act1 is found to produce the preconditions for actions
act2 and act3 which each produce a precondition for
act4. Such a structure requires that two different con-
ditions be created and preserved across two different
actions for their use. Note that while the actions are
only partially ordered, there is no linearizion of them

that will remove the crossing dependency. That is, act2
and act3 can be reordered but this will not remove the
crossing dependency.

Figure 1: An abstract plan with a crossed dependency
structure

The argument for the necessity of MCSGs for plan-
ning rests on real world examples of plans with this
structure. Being able to describe what such a plan
looks like is not compelling if they never occur in PR
problem domains. Fortunately, examples of plans with
this structure are relatively common. Consider recog-
nizing the activities of a bank robber that has both his
gun and ski-mask in a duffel bag and his goal is to rob
a bank. He must open the bag, put on the mask and
pick up the gun and enter the bank. Figure 2 shows
this plan. This plan has exactly the same crossed de-
pendency structure shown in Figure 1.

Figure 2: An example plan with crossing dependency
structure

Note, that we could make this plan much more com-
plex with out effecting the result. Actions could be
added before opening the bag, after entering the bank,
and even between putting on the ski-mask and pick-
ing up the gun so long as the critical causal links are
not violated. The presence of plans with this structure
and our desire to recognize such plans gives us a strong
reason to look at the grammars that fall this class as a
grammatical formalism for PR.

4.1 Why MCSGs?
Joshi[Joshi, 1985] first formally defined the class of
MCSGs as those grammars that share four properties
that are relevant for NLP:
• The class of languages included covers all context

free languages.
• The languages in the class are polynomially

parsable.
• The languages in the class only capture cer-

tain types of dependencies including nested (non-
crossing) and crossed dependencies.



• The languages in the class have the constant
growth property which requires that if all of the
sentences in the language are sorted according to
their length then any two consecutive sentences
do not differ in their length by more than a con-
stant factor determined by the grammar.

This set of properties are also relevant for defining the
class of grammars that would work well for PR. We
will argue for each of them in order.

First, we have just demonstrated the need for gram-
mars that are more than context free for PR. Second,
clearly polynomial parsing is desirable for PR. In or-
der to use these algorithms in real world applications
they will need to be extended to consider multiple pos-
sible interleaved goals and to handle partially observ-
able domains[Geib and Goldman, 2003]. If a single
goal can’t be parsed in polynomial time what hope do
we have for efficient algorithms for the needed exten-
sions? Further, PR is needed in a great many applica-
tions that will not tolerate algorithms with greater com-
plexity. For example, assistive systems are not useful
if their advice comes to late.

Third, Plans do have structure that is captured in de-
pendency structures. Therefore, it seems natural to try
to restrict the grammar for plans to the kinds of de-
pendency structures that are actually used. Whether or
not the dependency restrictions that are consistent with
NLP are the same set for PR is largely an empirical
question. We have already seen evidence of crossing
dependencies that required us to abandon CFGs in fa-
vor of MCSG’s. While nested and crossing dependen-
cies in the abstract can cover all the kinds of dependen-
cies needed in planning, different MCSGs place differ-
ent restrictions on the allowable depth of crossings and
the number of nesting. This will have a significant im-
pact on the expressiveness of a particular MCSG and
its applicability to PR.

Fourth and finally, the requirement of the constant
growth rate may be the hardest to understand. Intu-
itively in the PR domain this means that if there is a
plan of length n then there is another plan of length at
most n+K where K is a constant for the specific do-
main. For example this rules out that the length of the
next plan is a function of the length of the previous plan
or some other external feature. Note this says nothing
about the goals that are achieved by the plans. The
plan of length n and length n+K may achieve very dif-
ferent goals but they are both acceptable plans within
the grammar. This speaks to the intuition that given a
plan one should be able to add a small fixed number
of actions to the plan and get another plan. Again this
seems to be the kind of property one expects to see in
a PR domain and therefore in a plan grammar.

Now, while we believe we have made a strong ar-
gument for the use of MCSGs for PR, this is not the
final word on the question. While we have presented
an argument that we need at least the expressiveness
of LIGs, it may be the case that still more powerful
grammar formalisms are needed. The most promising
method for proving such a result would require find-

ing plans with dependency structures that are not in
MCSG that our PR systems need to recognize. Thus,
determining if MCSGs are sufficient for PR is an open
research question for the community.

While there are well known languages that are not
in MCSG it is difficult to see their relevance to plan-
ning domains. For example the language {a2n

}, that is
the language where in the length of any sentence of the
language is a power of two, is not MCSG as it fails the
constant growth requirement. It is possible to imagine
contrived examples where this would be relevant for
PR (Perhaps as part of some kind of athletic training
regime, we want to recognize cases where in someone
has run around the track a number of times that is a
power of two.) However, this certainly seems anoma-
lous and most likely should be dealt with by reasoning
that falls outside of the grammar, like a counter and a
simple test.

5 Conclusions
There are close ties between the process of natural lan-
guage processing and plan recognition. This relation
should allow these two processes to inform each other
and allow the transfer of research results from one area
to the other. However, much recent work in both fields
has gone unnoticed by researchers in the other field.
This paper begins the process of sharing these results,
describing the isomorphism between the grammatical
formalisms from NLP and plan representations for PR,
arguing that like NLP, PR will require a grammatical
formalism in the mildly context sensitive family, and
finally that NLP and PR can form a common underly-
ing task that can usefully be explored together.
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