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Abstract

In this paper, we analyze the different approaches taken to-date within the computer vision,

robotics and artificial intelligence communities for the representation, recognition, synthesis and

understanding of action. We deal with action at different levels of complexity and provide the reader

with the necessary related literature references. We put the literature reference further into context

and outline a possible interpretation of action by taking into account the different aspects of action

recognition, action synthesis and task-level planning.

Keywords: action recognition, action representation, action synthesis, action understanding,

planning

1 Introduction

The recognition and interpretation of human or robot induced actions and activities has gained consid-

erable interest in the computer vision, robotics and AI communities. This is partially due to increasing

computer power that allows large amount of input data to be stored and processed, but also due the

large number of potential applications, e.g., in visual surveillance, in the entertainment industry, robot

learning and control. Depending on the application, starting points and aims in action related research

are different. In this paper, we analyze the different approaches to action representation, recognition

and mapping taken to-date within the three communities.

In visual surveillance, many applications are limited to distinguish usual from unusual actions,

without any further interpretation of the action in the scene. An application of great potentials are
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automatic scene understanding systems that include the interpretation of the observed actions such as

what actions are executed, where they are executed, who is involved, and even a prediction of what the

observed individuals’ intentions might be given their present behavior. Such a surveillance system has

to be non-intrusive and could potentially include a number of different sensors. In the entertainment

industry, the interest lies mainly in the field of motion capture and synthesis. In film productions,

precise motion capture allows to replace an actor with a digital avatar (as often done in recent movies).

In computer games, game designers are interested in realistically looking digital animations as well

as in motion capture technology that allows the gamer to interact with the computer game through

body movements, as, e.g., done in the Sony EyeToy games. Ideally, the motion capture should be non-

intrusive for both, film and computer games, so that actors and gamers would not need to wear special

suits. The computer game needs to be able to interpret the movements of the gamer in a robust and

reliable manner to maintain a maximal degree of entertainment. The surveillance and entertainment

applications receive a strong attention from the computer vision community. Here, action recognition

is often treated as a pattern matching problem with an additional time-dimension. A strong attention

is given to improper imaging conditions, noisy input data and the development of robust approaches

for representation and recognition the actions.

There is strong neurobiological evidence that human actions and activities are directly connected to

the motor control of the human body [42, 99, 100]. When viewing other agents performing an action,

the human visual system seems to relate the visual input to a sequence of motor primitives. The

neurobiological representation for visually perceived, learned and recognized actions appears to be the

same as the one used to drive the motor control of the body. These findings have gained considerable

attention from the robotics community [23, 106, 108] where the goal of imitation learning is to develop

robot systems that are able to relate perceived actions of another (human) agent to its own embodiment

in order to learn and later to recognize and to perform the demonstrated actions. One of the goals for

the future is to enable artifical agents to acquire novel behaviors through observation of humans or

other agents.

The neurobiological findings motivate research to identify a set of action primitives that allow

a) representation of the visually perceived action, and b) motor control for imitation. In addition,

this gives rise to the idea of interpreting and recognizing activities in a video scene through a hierarchy

of primitives, simple actions and activities. Many researchers in vision and robotics attempt to learn

the action or motor primitives by defining a “suitable” representation and then learning the primi-

tives from demonstrations. The representations used to describe the primitives vary a lot across the

literature and are subject to ongoing research.

2



As an example, for imitation learning a teacher might attempt to show a robot how to set-up or

clean a dinner table. An important aspect is that the setting of the environment might change between

the demonstration and the execution time. A robot that has to set-up a dinner table may have to plan

the order of handling plates, cutlery and glasses in a different way than previously demonstrated by the

human teacher. Hence, it is usually not sufficient to just replicate the human movements. Instead, the

robot must have the ability to recognize what parts of the whole task can be segmented and considered

as subtasks so that it can perform on-line planning for task execution given the current state of the

environment. A number of crucial problems arise:

1. How should the robot be instructed that the temporal order of the subtasks may or may not

matter? As an example, the main dish plate should always be under the appetizer plate while the

temporal order in which the silverware is placed on the table is not important.

2. How should the scene, the objects and the changes that can be done to them be represented? For

example, when cleaning up the table the representation should allow to pile on the tray wine

glasses on top of plates while piling plates on wine glasses might cause a major disaster.

3. Given a specific scene state, the robot may be unable to perform a particular action. For example,

the representation may specify that wine glasses can be piled on top of plates but robot may be

unable to reach the desired height.

4. The entire scene may change during the execution phase and the robot has to be able to react to

sudden changes and replan its task.

Different aspects of the above problems have been considered in the area of task planning and se-

quencing with the specific focus on structured collections of actions. Here, different types of reasoning

systems have been proposed including rule based systems, traditional Bayes nets, context free gram-

mars, etc. mainly for task planning purposes. Different methods and levels of action representation

make the strongest obstacle to integrating the requirements for high-level conceptual state change rep-

resentations suitable for planning and low-level continuous action execution and imitation for robots.

In spite of the differences in the potential applications, most of the scenarios are closely related:

all of them use sensory input, all need to capture the movements of an agent at different degrees

of precision and all require a certain level of intelligence to understand the meaning of the captured

movements. Thus, there is a need to:

1. Recognize the movements and actions of observed agents (recognizing the action by observing it),
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2. understand what effects certain actions have on the environment of the actor (recognizing the

action by observing its effects on the environment),

3. understand how to physically perform a certain action in order to cause a particular change in the

environment.

While the first two points are commonly shared across members of a society (non-verbal communica-

tion), the third point depends heavily on the individual/robot under consideration: how to perform an

action that causes a particular environmental change may be different between individuals and robots,

e.g., depending on their physical capabilities.

In this paper, we analyze the different approaches taken to-date for dealing with action at different

levels of complexity (see Fig. 1) and provide the reader with the necessary related literature references.

Different authors use different terms for discussing action primitives and action grammars. In Sec. 2,

we mention the most general references and define, to escape the diversity of terms, our own termi-

nology that we will use throughout this paper. In Sec. 3, 4, 5 we discuss how the representation and

recognition of actions is treated with respect to representation, synthesis and planning. We conclude

this paper in Sec. 6.

2 Notation and Action Hierarchies

Terms like actions, activities, complex actions, simple actions and behaviors are often used interchangeably

by different authors. However, in order to describe and compare the different publications, we shortly

review the different terms used and define a common terminology used throughout the paper. In a

pioneering work [79], Nagel suggested to use a hierarchy of change, event, verb, episode, history. An

alternative hierarchy (reflecting the computational aspects) is proposed by Bobick [12] who suggests to

use movement, activity and action as different levels of abstraction (see also [1]). Others suggest to also

include situations [45] or use a hierarchy of Action primitives and Parent Behaviors [53].

In this paper, we adopt the following action hierarchy: action/motor primitives, actions and activities.

Action primitives or motor primitives are used for atomic entities out of which actions are built. Actions

are, in turn, composed into activities. The granularity of the primitives often depends on the applica-

tion. For example, in robotics, motor primitives are often understood as sets of motor control commands

that are used to generate an action by the robot (see Sec. 3.4).

As an example, in tennis action primitives could be, e.g., “forehand”, “backhand”, “run left”, “run

right”. The term action is used for a sequence of action primitives needed to return a ball. The choice of

a particular action depends on whether a forehand, backhand, lob or volley etc., is required in order to
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Figure 1: Different levels of action consideration discussed in this paper: Observation and Recognition

(blue, Sec. 3), synthesis and imitation (green, Sec. 4) and task-level planning and recognition (orange,

Sec. 5)
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be able to return the ball successfully. Most of the research discussed below falls into this category. The

activity then is in this example “playing tennis”. Activities are larger scale events that typically depend

on the context of the environment, objects or interacting humans.

Good overviews of activity recognition are given by Aggarwal et al.[1, 2], in [39, 130] as well as

in a more recent one by Moeslund et al.[77]. They aim at higher-level understanding of activities and

interactions and discuss different aspect such as level of detail, different human models, recognition

approaches and high-level recognition schemes. Veeraraghavan et al.[126] discuss the structure of an

action and activity space.

2.1 Outlook

In order to investigate the full complexity of systems that deal with action representation, recognition

and synthesis we need to consider the following problem areas, (see Tab. 1 for a summary):

1. How to observe other agents: This concerns the detection, representation, recognition and inter-

pretation of visually perceived actions of observed agents. Problems such as view-invariance,

use of action grammars, pattern matching over time, representational issues, etc. need to be

investigated.

2. How to control the physical body of a robot: this concerns learning/estimation of the mapping

between the human and the robot kinematic chains.

3. How a robot can imitate other agents: this concerns how a robot can generalize over a set of

observed actions in order to generate novel ones from those observed. Here, issues such as hi-

erarchical organization for sequences and probabilistic inference and planning for recognition,

prediction and decision making are relevant.

4. Learning objects and their affordances, thus arriving at a set of object-action complexes that take

into account the acting agent and the context.

2.2 Ego-Centric Action

In the robotics community, recognition of human activity has been used extensively for robot task learn-

ing through imitation and demonstration [64, 106, 9, 83, 84, 67, 54, 30, 18]. Here, mainly human body

model-based approaches (Sec. 3.3) are used. One of the fundamentals of social behaviors of humans is

the understanding of each others intentions through perception and recognition of performed actions.

This is also underlined by the mirror neurons, motor resonance or mirroring [98, 91, 35, 101, 43]. The
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Problem Input Issues to investigate

Recognition 2D Image data, Sensor data,

MoCap data

View variance, variance in execution di-

rection/scale, learning and using gram-

mars

Imitation Set of learned actions, object

information (position, type,

shape, orientation, ...), robot

kinematics, human body

model

Object-dependent execution of action,

mapping between kinematic chains, gen-

eralization over different observations,

planning

Learning Object Af-

fordances

Agent, scene with known ob-

jects

Learning statistics between objects,

scene state changes and agent’s actions

through observation and self-exploration

Table 1: Researach areas, input and issues to investigate.

mirror neurons allow the monkey to interpret other’s actions by aligning inside its mind the pose of

its own (imagined) body to the pose of an observed one and appear to be of major importance for the

ability of the monkey (and human) to learn through imitating others. Thus, the mirror neurons are a

biological justification for the use of human body model-based approaches to recognizing actions.

By internally aligning the own body to an observed one, the mirror neurons move the reference sys-

tem from the observed agent into the observer’s ego-centric frame of reference. In imitation learning,

the action to be learned is executed by the trainer in his/her own coordinate system. In other words,

the robot observes the action in the trainers coordinate system and then, when imitating, recognizes

and executes the observed action in its own coordinate system. The body model is often represented as

a kinematic chain and the recognition is done in the space of possible joint configurations or Cartesian

trajectories.

This ego-centric approach is in theory a great simplification of the action recognition task as one is

able to compare and match the body movements of observed agents within a common, ego-centric,

representation coordinate system.

The problems of the ego-centric approach are often due to the vision problem, i.e., the extraction of

the visual data. The quality of the visual data has to be sufficiently good and the tracked agent has to

be large enough (in terms of pixels). First experiments [85, 112, 27] have been done in aiding the body

tracking approaches with models for the executed action in order to constrain the tracking process.

However, the models used so far are very simple and model usually periodic movements like walking.
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It is an open question and subject of present research how to incorporate more complex models to

constrain the tracking process.

Another problem stems from the general variability of even the simplest actions. Especially in

every day like actions, simple movements such as “reach and grasp an object” can have different direc-

tions and reaching distances. To represent such actions, it is not sufficient to store simple trajectories.

Instead, special care has to be taken that actions with different parameterizations can be recognized

and synthesized. E.g., for the object grasping example, the action would be parameterized by the

position of the object. One solution for parameterizing action from an ego-centric point of view was

suggested by [129]. However, in this work only simple actions are modeled, and it is not clear how this

representation would scale to more complex actions.

The work presented in [67, 68, 69] proposes a general architecture for action (mimicking) and pro-

gram (gesture) level visual imitation. The authors present a holistic approach to the problem by fa-

cilitating i) the use of motor information for gesture recognition; ii) usage of context (e.g., object affor-

dances) to focus the attention of the recognition system and reduce ambiguities, and iii) the use of iconic

image representations for the hand, as opposed to fitting kinematic models to the video sequence.

2.3 Eco-Centric Action

For many actions that are meant to lead to a specific change in the environment, the precise way of

how a teacher executes an action does sometimes not matter. Often, it cannot even be exactly repeated

if, e.g., the object at which the action is aimed, is located at different positions.

Alternatively, a specific action may be carried out without any constraints on how it may be exe-

cuted. The two examples from Sec. 1 on how to set-up and clean a dinner table are typical examples

in this context: They are meant to cause a specific environmental change while the actual execution

is either not particularly constrained or has to be planned on-line, depending on the present state of

the environment. An observer can recognize the performed action by interpreting the change of the

environment, e.g., “the table is set-up”, without considering how the agent’s actions that lead to the

environmental change were precisely executed. This viewpoint leads to an eco-centric interpretation of

action as it puts the environment into the center of the action interpretation problem.

In order to approach this viewpoint one needs to consider two issues:

1. how to represent the changes in the environment and

2. how to physically cause specific changes in the environment.

The first issue contains three subproblems: a) How to visually recognize the changes in the environ-
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ment is discussed in Sec. 3.1 and 3.2. b) How to interpret the changes is a matter of plan recognition

(see Sec. 5). c) How to combine these two: A few attempts were made to connect the two approaches

[102, 105]. Some of the early approaches in robotics suggest [50] that changes in the environment

should be represented as changes in the surface relationships between the scene objects.

The second issue is concerned with the execution of meaningful robot movements that are meant

to cause a specific change in the environment. Again, this issue has a number of subproblems: a) How

to execute a simple meaningful action. This is a problem beyond simple motor control (Sec. 2.2) as the

execution is based on the state of the environment, e.g., the position of the object to be grasped. b) How

to plan the meaningful action to be executed by the robot. This is a problem which is inversely related

to the point b), above. It requires a usually grammatical representation that describes the possible

changes of the environment and the physical actions that can cause them [117, 116].

2.4 Object Action Complexes

To formalize the possible changes in the environment, grammatical production rules for objects, object

states and object affordances (an affordance changes the state of an object) can be used, [37, 26]. E. g. a

door can have the states {open,closed} and the affordance {close door, open door}.

In some cases, the objects and production rules are a-priori specified by an expert and the scene

state is usually considered to be independent from the presence of the agent itself within the scene, i.e.,

the agent affects the scene state only through a set of specified actions. The fact that an agent might

physically not be able to execute a particular action, e.g., because it might not be in the right position

or it might be too weak, must be taken into account. The research on motion planning takes this into

account, while in most cases it is assumed that the scene (environment) does not change while the

agent performs the planned movement.

Another problem that arises from a-priori definition of object affordances is the problem of taking

into account the physical properties of the robot. In order for a robot to interact successfully with an

environment, the set of object affordances it takes into account for planning must necessarily reflect its

physical abilities.

Unless the programmer has a precise model of the physical robot body as well as for the scene

objects and the entire scene available, the affordances need to be learned by the robot itself through

exploration. This leads us to the concept of object-action complexes. In order to learn how valid and

appropriate an action is, the robot needs eventually to try to execute it. This could be interpreted as

“playing” or “discovering”. Similarly to humans, the learning process can be biased through imitation

learning as long as there is sufficient similarity between the learning agent and the teacher.
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Figure 2: Different types of action recognition approaches presented in Section 3.

3 Interpretation and Recognition of Action

The vision community has mainly the goal of detecting, recognizing and interpreting movements of

a (possibly non-human) agent based on video camera data. For example, in scene interpretation for

surveillance the knowledge is often represented in a statistical manner. It is meant to distinguish “reg-

ular” from “irregular” activities and it should be independent from the objects causing the activity

and thus are usually not meant to distinguish explicitly, e.g, cars from humans. On the other hand,

some action recognition applications focus explicitly on human activities and the interactions between

human agents. Here, we follow Aggarwal and Cai [2] and distinguish between the full-body based

approaches that model the human either as a whole, i.e., without distinguishing between body parts

and the body-part based approaches that model the human in a detailed manner as a set of body parts.

Most full-body approaches attempt to identify information such as gender, identity or simple actions

like walking or running. Researchers using human body part based approaches appear often to be

interested in more subtle actions or attempt to model actions by looking for action primitives with

which the complex actions can be modeled. Body-part based approaches can also be used in medical

applications or in applications from the entertainment industry. In the following, we review some of

the recent publications that have their emphasis on action recognition: The presented techniques use

video camera data as their primary input source, use mostly well-known tracking and motion capture

techniques and discuss how the results of those techniques can be used for action recognition. For

papers on vision-based motion capture and tracking, we refer the reader to [77]. Fig. 2 summarizes the

different types of approaches we have mentioned in this chapter.
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3.1 Scene Interpretation

Many approaches consider the camera view as a whole and attempt to learn and recognize activities

by observing the motion of objects without necessarily knowing their identity, i.e., by identifying the

chances in the scene over time. This is reasonable in situations where the objects are small enough to

be represented as points on a 2D plane.

Stauffer et al.[115] present a full scene interpretation system which allows detection of unusual situ-

ations. The system extracts features such as 2-D position and speed, size and binary silhouettes. Vector

Quantization is applied to generate a codebook of K prototypes. Instead of taking the explicit tempo-

ral relationship between the symbols into account, Stauffer and Grimson use co-occurrence statistics.

Then, they define a binary tree structure by recursively defining two probability mass functions across

the prototypes of the code book that best explain the co-occurrence matrix. The leaf nodes of the bi-

nary tree are probability distributions of co-occurrences across the prototypes and at a higher tree depth

define simple scene activities like pedestrian and car movement. These can then be used for scene in-

terpretation. Boiman and Irani [14] approach the problem of detecting irregularities in a scene as a

problem of composing newly observed data using spatio-temporal patches extracted from previously

seen visual examples. They extract small image and video patches which are used as local descriptors.

In an inference process, they search for patches with similar geometric configuration and appearance

properties, while allowing for small local misalignments in their relative geometric arrangement. This

way, they are able to quickly and efficiently infer subtle but important local changes in behavior.

In [21, 124] activity trajectories are modeled using non-rigid shapes and a dynamic model that

characterizes the variations in the shape structure. Vaswani et al.[124] uses Kendall’s statistical shape

theory [61]. Nonlinear dynamical models are used to characterize the shape variation over time. An

activity is recognized if it agrees with the learned parameters of the shape and associated dynamics.

Chowdhury et al.[21] use a subspace method to model activities as a linear combination of 3D basis

shapes. The work is based on the factorization theorem [121]. Deviations from the learned normal

activity shapes can be used to identify abnormal ones. A similar complex task is approached by Xiang

and Gong [131]. They present a unified bottom-up and top-down approach to model complex activities

of multiple objects in cluttered scenes in order to (1) learn statistical dependencies between the objects

, (2) structure and parameters, (3) select visual features that represent activities of multiple objects, (4)

infer semantic descriptions of activities from the learned model and (5) discuss how to use the activity

model to improve interpretation of individual objects. Their approach is object-independent (it can be

body parts, cars, etc. ) and they use a Dynamically Multi-Linked Hidden Markov Models (HMMs) to

interlink between multiple temporal processes corresponding to multiple event classes.
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3.2 Recognizing Human Actions Without Using Body Parts

A large number of approaches for recognition are based on the human silhouette as whole silhouettes

can often be extracted much easier when singular body parts are difficult to distinguish. This is espe-

cially true when the observed agent is far away from the camera. Naturally, the question on what an

observed agent is precisely doing can be answered only with a much lesser precision than when sin-

gular body parts are extracted. Actions such as walking, running, jumping, etc. as well as their speed,

location in the image and their direction can, however, be extracted with an impressive robustness.

All the approaches mentioned in this section attempt to recognize the apparent action based directly

on a sequence of 2D image projections, without the intermediate use, e.g., of 3D human model. The

argument is that the use of an explicit human (not necessarily 3D) model is often not feasible in case of

noisy and imperfect imaging conditions and that a direct pattern recognition based on the 2D data is

potentially more robust. This argument holds especially when there are only very few pixels on image

of the observed agent.

A pioneering work has been presented by Efros et al.[29]. They attempt to recognize a set of simple

actions (walking, running plus direction and location) of people whose images in the video are only

30 pixels tall and where the video quality is poor. They use a set of features that are based on blurred

optic flow (blurred motion channels). First, the person is tracked so that the image is stabilized in the

middle of a tracking window. The blurred motion channels are computed on the residual motion that

is due to the motion of the body parts. Spatio-temporal cross-correlation is used for matching with

a database. The work of Robertson and Reid [102] extends the work of Efros [29] by proposing an

approach where complex actions can be dynamically composed out of the set of simple actions. They

attempt to understand actions by building a hierarchical system that is based on reasoning with belief

networks and HMMs on the highest level and on the lowest level with features such as position and

velocity as action descriptors. The system is able to output qualitative information such as walking –

left-to-right – on the sidewalk.

A large number of publications work with space-time volumes which is a recently proposed repre-

sentation for the spatio-temporal domain. The 3D contour of a person gives rise to a 2D projection.

Considering this projection over time defines the XY T image volume. One of the main ideas here is to

use spatio-temporal XT -slices from an image volume XY T [95, 97]. Articulated motions of a human

then show a typical trajectory pattern. Ricquebourg and Bouthemy [95] demonstrate how XT -slices

can facilitate tracking and reconstruction of 2D motion trajectories. The reconstructed trajectory allows

a simple classification between pedestrians and vehicles. Ritscher et al.[97] discuss the recognition in

more detail by a closer investigation of the XT -slices. Quantifying the braided pattern in the slices
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of the spatio-temporal cube gives rise to a set of features (one for each slice) and their distribution is

used to classify the actions. Yilmaz and Shah [134] extract information such as speed, direction and

shape by analyzing the differential geometric properties of the XY T volume. They approach action

recognition as an object matching task by interpreting the XY T as rigid 3D objects. Blank et al.[11] also

analyze the XY T volume. They generalize techniques for the analysis of 2D shapes [46] for the use

on the XY T volume. Blank et al.argue that the time domain introduces properties that do not exist in

the xy-domain and needs thus a different treatment. For their analysis they utilize properties of the

solution of the Poisson equation [46]. This gives rise to local and global descriptors that are used for

recognizing simple actions.

Instead of using spatio-temporal volumes, a large number of researchers choose the more classi-

cal pattern recognition approaches such as PCA on sequences of silhouettes [136, 90, 55]. Bobick and

Davis pioneered the idea of temporal templates [12, 13]. They propose a representation and recogni-

tion theory [12, 13] that is based on motion energy images (MEI) and motion history images (MHI). The

MEI is a binary cumulative motion image. The MHI is an enhancement of the MEI where the pixel

intensities are a function of the motion history at that pixel. Matching temporal templates is based on

Hu moments. Bradski et al.[15] pick up the idea of MHI and develop timed MHI (tMHI) for motion

segmentation. tMHI allow determination of the normal optical flow. Motion is segmented relative

to object boundaries and the motion orientation. Hu moments are applied to the binary silhouette to

recognize the pose. In [32, 33], Elgammal and Lee use local linear embedding (LLE) [103, 120] in or-

der to find a linear embedding of human silhouettes. In conjunction with a generalized radial basis

function interpolation, they are able to separate style and content of the performed actions [33] as well

as to infer 3D body pose from 2D silhouettes [32]. Sato and Aggarwal [105] are concerned with the

detection of interaction between two individuals. This is done by grouping foreground pixels accord-

ing to similar velocities. A subsequent tracker tracks the velocity blobs. The distance between two

people, the slope of relative distance and the slope of each person’s position are the features used for

interaction detection and classification. The classification is based on the computed feature vectors and

the nearest mean classifier. In a number of publications, recognition is based on HMMs and dynamic

Bayes networks (DBNs). The work of Yamato et al.[133] is an example of an early application of HMMs

to the problem of action recognition. They demonstrated the usefulness of HMMs for the recognition

of sport scenes. Elgammal et al.[34] propose a variant of semi-continuous HMMs for learning gesture

dynamics. They represent the observation function of the HMM as non-parametric distributions to be

able to relate a large number of exemplars to a small set of states. Luo et al.[71] present a scheme for

video analysis and interpretation where the higher-level knowledge and the spatio-temporal seman-
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tics of objects are encoded with DBNs. The DBNs are based on key-frames and are defined for video

objects. Shi et al.[111] present an approach for semi-supervised learning of the HMM or DBN states to

incorporate prior knowledge.

3.3 Recognition Based on Body Parts

Despite the concerns mentioned in Sec. 3.2 about the difficulties in detecting individual body parts,

many authors are concerned with the recognition of actions based on the dynamics and settings of

individual body parts. Some approaches, e.g., [25], start out with silhouettes and detect the body

parts using a method inspired by the W4-system [48] which seems to work well under the assumption

of good foreground-background separation and large enough number of pixels on the observed agent.

Other authors use 3D-model based body tracking approaches where the recognition of (periodic) action

is used as a loop-back to support pose estimation [85, 112, 27, 7]. Many authors attempt to consider

the problem of detecting body parts and recognizing actions as a joint problem by defining the action

representation strictly based on the data that can be extracted [47, 110, 36, 135]. Other approaches

circumvent the vision problem by using a (vision-based) motion capture system in order to be able to

focus on finding good representations of actions [24, 87].

Ren and Xu [93] use as input a binary silhouette from which they detect the head, torso, hands

and elbow angles. Then, a primitive-based coupled HMM is used to recognize natural complex and

predefined actions. They extend their work in [94] by introducing primitive-based DBNs. One of the

major obstacles in action recognition from images is the variability of the visual data under changing

viewing directions. Parameswaran and Chellappa [87] consider the problem of view-invariant action

recognition based on point-light displays by investigating 2D and 3D invariant theory. As no general,

non-trivial 3D-2D invariants exist, [87] employ a convenient 2D invariant representation by decompos-

ing and combining the patches of a 3D scene. For example, key poses can be identifies where joints

in the different poses are aligned. In the 3D case, six-tuples corresponding to six joints give rise to 3D

invariant values and it is suggested to use the progression of these invariants over time for action rep-

resentation. A similar issue is discussed in the work by Yilmaz and Shah [135] where joint trajectories

from several uncalibrated moving cameras are considered. They propose an extension to the standard

epipolar geometry based approach by introducing a temporal fundamental matrix that models the ef-

fects of the camera motion. The recognition problem is then approached in terms of the quality of the

recovered scene geometry. Gritai et al.[47] address the invariant recognition of human actions, and

investigate the use of anthropometry to provide constraints on matching. They use the constraints to

measure the similarity between poses and pose sequences. Their work is based on a point-light display
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like representation where a pose is presented through a set of points in 3D space. Sheikh et al.[110] pick

up these results of [47, 135] and discuss that the three most important sources of variability in the task of

recognizing actions come from variations in viewpoint, execution rate and anthropometry of the actors.

Then, they argue that the variability associated with the execution of an action can be closely approx-

imated by a linear combination of action bases in joint spatio-temporal space. Fanti et al.[36] present

an approach that is content with a very small amount of user interaction for learning. They represent a

human activity as a collection of body parts moving in a specific pattern. To find the most likely model

alignment with input data they exploit appearance information which remains approximately invari-

ant within the same setting. Then, they use expectation maximization (EM) for unsupervised learning

of the parameters and structure of the model for a particular action and unlabeled input data. Action

is then recognized by maximum likelihood estimation on the observed motion pattern.

3.4 Action Primitives and Grammars

Some of the work attempts to decouple actions into action primitives and to interpret actions as a com-

position on the alphabet of these action primitives, however, without the constraints of having to drive

a motor controller with the same representation. E.g. Vecchio and Perona [125] employ techniques

from the dynamical systems framework to approach segmentation and classification. System identi-

fication techniques are used to derive analytical error analysis and performance estimates. Once, the

primitives are detected an iterative approach is used to find the sequence of primitives for a novel

action. Lu et al.[70] also approach the problem from a system theoretic point of view. Their goal is

to segment and represent repetitive movements. For this, they model the joint data over time with a

second order auto-regressive (AR) model and the segmentation problem is approached by detection

significant changes of the dynamical parameters. Then, for each motion segment and for each joint,

they model the motion with a damped harmonic model. In order to compare actions, a metric based

on the dynamic model parameters is defined.

While most scientists concentrate on the action representation by circumventing the vision problem,

Rao et al.[92] take a vision-based approach. They propose a view-invariant representation of action

based on dynamic instants and intervals. Dynamic instants (key poses) are used as primitives of actions

which are computed from discontinuities of 2D hand trajectories. An interval represents the time

period between two dynamic instants.

Modeling of activities on a semantic level has been attempted by Park and Aggarwal [88]. The

system they describe has 3 abstraction levels. At the first level, human body parts are detected using a

Bayesian network. At the second level, DBNs are used to model the actions of a single person. At the
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highest level, the results from the second level are used to identify the interactions between individuals.

Ivanov and Bobick [52] suggest using stochastic parsing for a semantic representation of an action.

They discuss that for some activities, where it comes to semantic or temporal ambiguities or insufficient

data, stochastic approaches may be insufficient to model complex actions and activities. They suggest

decoupling actions into primitive components and using a stochastic parser for recognition. In [52]

they pick up a work by Stolcke [118] on syntactic parsing in speech recognition and enhance this work

for activity recognition in video data. To be able to work with grammars, one needs to be able to

decouple complex actions in to action primitives. Krüger [63] suggests to embed the HMMs of different

action primitives into a Bayesian framework over time which identifies, at each time instance, the most

likely action primitive. Yamamoto et al.[132] present an application where a stochastic context free

grammar is used for action recognition. A very interesting approach is presented by Lv and Nevatia

in [72] where the authors are interested in recognizing and segmenting full-body human action. They

decompose the large joint space into a set of feature spaces where each feature corresponds to a single

joint or combinations of related joints. They use then HMMs to recognize each action class based on

the features and an AdaBoost scheme to detect and recognize the features.

4 Action Learning and Imitation

Unlike vision, robotics is mainly concerned with generative models of action that enable imitation

learning. The robotics community has recognized that the acquisition of new behaviors can be realized

by observing and generalizing the behaviors of other agents. The combination of generative models

and action recognition leads to robots that can imitate the behavior of other individuals [106, 16, 28]. We

refer to [108] for an extensive overview of computational approaches to motor learning by imitation.

Hence, the interest of roboticist is to enable robots with action synthesis capabilities, both if these

actions are performed by humans or other robots. In some cases, the action recognition is used for pure

recognition purposes in context understanding or interaction. Consequently, different discriminative

approaches are commonly adopted here. However, recent developments in the field of humanoid

robots have motivated the use and investigation of generative approaches with the particular applica-

tion of making robots move and excite their action in a human-like way.

For a robot that has to perform tasks in a human environment, it is also necessary to be able to

learn about objects and object categories. It has been recognized recently that grounding in the embod-

iment of a robot, as-well as continuous learning is required to facilitate learning of objects and object

categories [119, 37]. The idea is that robots will not be able to form useful categories or object repre-
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sentations by only being a passive observer of its environment. Rather a robot should, like a human

infant, learn about objects by interacting with them, forming representations of the objects and their

categories that are grounded in its embodiment. While most of the work on robotic grasping so far has

dealt with analytical methods where the shape of the objects being grasped is known a-priori, the goal

for the future is to enable robots to learn how to manipulate novel objects independently and one way

of bootstrapping the learning process may be through observation.

Some of the interesting questions arise:

• What modeling strategies are suitable for action representation and recognition purposes?

• Is it possible to learn action when we do not have the knowledge of the task or the embodiment

(kinematic structure) of the teacher?

• Is it possible to distinguish between very similar actions such as pick up and push an object?

• Is it enough to only observe the motion of the arm/hand or does the motion of the object have to

be included in the modeling process?

One of the most basic interactions that can occur between a robot and an object is for the robot to

push the object, i.e. to simply make a physical contact. Already at this stage, the robot should be able

to form two categories: physical and non-physical objects, where a physical object is categorized by

the fact that interaction forces occur. A higher level interaction between the robot and an object would

exist if the robot was able to grasp the object. In this case, the robot would gain actual physical control

over the object and having the possibility to perform controlled actions on it, such as examining it

from other angles, weighing it, placing it etc. Information obtained during this interaction can then be

used to update the robots representations about objects and the world. Furthermore, the successfully

performed grasps can be used as ground truth for future grasp refinement [37].

4.1 Movement Primitives

Many of the generative approaches have found their roots in the work of Newton et al.[82] where the

behavioral experiments indicated that observers are able to segment ongoing activity into temporal

parts named action units. In addition, it has been shown that the resulting segmentation is reliable

and systematically related to relevant features of the action. Arbib [3] proposed the idea of movement

primitives, which can be viewed as a sequence of actions that accomplish a complete goal-directed

behavior. Conceptually, the idea of of movement primitives is appealing because it allows us to abstract

complex motions as symbols, thus providing the basis for higher level cognitive processes. This has
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been demonstrated in [73], where motor behaviors execute the appropriate primitives to accomplish a

verbally described high-level task.

There is no consensus in the literature about how to encode movement primitives (see also Sec.

3.4). Proposals include nonlinear dynamic attractor systems that can be flexibly adjusted to represent

arbitrarily complex motor behaviors [107], primitive flow fields acquired from the motion capture data

[54], hierarchical recurrent neural networks [86], HMMs [10, 51], and movement representation by

force fields [78] . There may well be that no single representation exists and that different movement

primitives are encoded differently.

More specifically, Jenkins et al.[54] suggest to apply a spatio-temporal non-linear dimension reduc-

tion technique on manually or automatically segmented human motion capture data. Similar segments

are clustered into primitive units which are generalized into parameterized primitives by interpolating

between them. In the same manner, they define action units (“behavior units”) which can be gener-

alized into actions. Ijspeert et al.[49, 107] define a set of nonlinear differential equations that form a

control policy (CP) and quantify how well different trajectories can be fitted with these CPs. The pa-

rameters of a CP for a primitive movement are learned in a training phase. These parameters are also

used to compute similarities between movements. Billard et al.[10] use an HMM based approach to

learn characteristic features of repetitively demonstrated movements. They suggest to use the HMM

to synthesize joint trajectories of a robot. For each joint, one HMM is used. Calinon et al.[18] use an

additional HMM to model end-effector movement. In these approaches, the HMM structure is heavily

constrained to assure convergence to a model that can be used for synthesizing joint trajectories. Paine

and Tani [86] propose a hierarchical recurrent neural network that can both encode the sensorimotor

primitives and switch between them. Different types of dynamic structures self-organize in the lower

and higher levels of the network. The interplay of task-specific top-down and bottom-up processes

allows the execution of complex navigation tasks.

This motivates the idea that – in view of imitation learning – the action recognition process may

be considered as an interpretation of the continuous human behaviors which, in its turn, consists of a

sequence of action primitives such as reaching, picking up, putting down. The key issues are how to iden-

tify what the movement primitives in a given domain are, how to encode them and how to recognize

them in the motion capture data, [63]. Finally, imitation learning requires to relate movement prim-

itives of other agents to the robot’s own primitive movements. While many of the above mentioned

approaches provide methods to learn the parameters of movement primitives in a given domain, the

automatic determination of all relevant primitives in a domain has proven to be extremely difficult.

They are therefore often hand designed [8] or acquired from the motion capture data with the help of
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manual segmentation.

4.2 Imitation Learning

The integration of action recognition with generative models for movements and actions leads to imita-

tion learning. It has been argued that imitation learning needs to address the following three questions:

i) what to imitate, ii) how to imitate, and iii) when to imitate [81]. The first issue is concerned with the

perception of actions, the second with action generation and the third with decision making. In the

following we review the work concerned with the first two issues.

Robotics research on imitation started in early 1990s under the names such as teaching by showing,

learning by watching, and programming by demonstration. Roboticists first focused on the extraction

of the task knowledge by observing and analyzing the changes in the environment caused by a human

performing an assembly task [50, 64]. Kuniyoshi et al.[64] and Kang and Ikeuchi [57] also stressed the

importance of tracking and segmenting the demonstrator’s hand motion to acquire additional infor-

mation about the task. Thus, already from the beginning it became clear that imitation depends on the

analysis and recognition of human motion, the identification of object configurations relevant to the

task, and the detection of transitions between object configurations.

With the advent of humanoid robots, which have a kinematic and dynamic structure similar to

humans, the acquisition of motor knowledge by observing humans performance has become more

attractive. First works dealt with the mapping of human grasps to the grasps of a humanoid hand

[58]. The mapping of whole body human movements, e. g. dance movements, to the movements of a

humanoid robot followed [122, 96]. An automatic approach to relate human kinematics to humanoid

robot kinematics has been developed [123] and it has been shown how to incorporate balancing con-

trollers into the captured movements [104].

Kuniyoshi et al.[65] focus on the very basic question of how the robot can acquire the appearance-

level imitation ability. They start from the proposal of Meltzoff and Moore [75] who found that very

early neonates exhibit the imitation ability. Meltzoff and Moore proposed that either there exists an

innate mechanism which represents the gestural mechanism or such a representation is built through

self-exploratory sensory motor learning called body babbling. Kuniyoshi et al.[65] followed the second

approach and created a humanoid that learns to imitate first-seen gestural movements by performing

self-exploratory motion.

The appearance-level imitation of movements adapted to the robot kinematics and/or dynamics is

often not sufficient to achieve the task goal. Many tasks require to consider the effect of movements

on the target objects. Miyamoto et al.[76] extract a set of via-points from a human movement trajec-
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tory and treat the extracted via points as control variables to accomplish the task. Atkeson and Schaal

[5] studied learning of motor tasks from human demonstration based on learning a task model and a

reward function from the demonstration and use the model and reward function to compute an appro-

priate policy. Nakanishi et al.[80] introduced a framework for the learning of walking controllers using

dynamic movement primitives. Asfour et al.[4] use HMMs to generalize movements demonstrated to

a robot several times.

Yet a higher level of abstraction is achieved by sequencing a number of action units. HMMs have

been proposed as a suitable representation for this purpose [83, 10, 51, 4]. These approaches attempt to

integrate action recognition with movement generation. HMMs define a joint probability distribution

over observations and state variables. For modeling of the observation process and enumerating all

possible sequences of observations, it is commonly assumed that these are atomic and independent.

This affects the inference problem which makes probabilistic models intractable for multiple overlap-

ping features of the observation or complex dependencies of observations at multiple time steps. One

of the solutions to this problem may be the use of discriminative models such as Conditional Random

Fields [114].

Billard et al.[10] argue that the data used for imitation has statistical dependencies between the

activities one wishes to model and that each activity has a rich set of features that can aid both the

modeling and recognition process. They developed a general policy for learning the relevant features

of an imitation task.

The discovery of mirror neurons, which fire both when the subject observes and when the subjects

generates a specific behavior, has greatly influenced research in robot imitation. Inamura et al.[51]

proposed a model in which movement primitives can be both recognized and generated using the

same HMMs, thus realizing the mirror neuron idea on a humanoid robot.

4.3 Learning Actions from Multiple Demonstrations

An important issue to consider for robotic applications is that the initial task setting will change be-

tween the demonstration and execution time. A robot that has to set-up a dinner table may have to

plan the order of handling plates, cutlery and glasses in a different way that previously demonstrated

by a human teacher. Hence, it is not sufficient to just replicate the human movements but the robot

i) must have the ability to recognize what parts of the whole task can be segmented and considered

as subtasks so to ii) perform on-line planning for task execution given the current state of the envi-

ronment. The important problem here is how to instruct or teach the robot the essential order of the

subtasks for which the execution order may or may not be crucial. One way of addressing this problem
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is to demonstrate a task to the robot multiple times and let the robot learn which order of the subtasks

is essential. Many of the current robot instruction systems concentrate on learning by imitation or PbD

based on a single demonstration. However, the robot should be able to update the initial task model by

observing humans or another robot performing the task. In other words, we need a task level learning

system that builds constraints automatically identified from multiple demonstrations.

This problem has been studied by Ogawara et al.[62], where essential interactions are used to denote

the important hand movements during an object manipulation task. Then, the relative trajectories

corresponding to each essential interaction are generalized and stored in the task model, which is used

to reproduce a skilled behavior. The work presented by Ekvall and Kragic [31] considers this problem

not on the trajectory but on the task planning level where each demonstrated task is decomposed

into subtasks that allow for segmentation and classification of the input data. The demonstrated tasks

are then merged into a flexible task model, describing the task goal state and task constraints. The

latter work is then also similar to the task level planning approaches studied in the field of artificial

intelligence.

5 Plan and Intention Recognition

Task level work in action and plan recognition has focused more on recognizing structured collections

of actions and their interaction also in relation to development of cognitive architectures, [26, 56]. Tra-

ditionally this task has been called plan recognition, task tracking, or intent recognition. Sadly these terms

in some cases have obscured the task that was actually being preformed. A great deal of research has

been done on plan recognition using multiple approaches including: rule based systems, traditional

Bayes nets, parsing of probabilistic (and non probabilistic) context free grammars, graph covering, and

even marker passing. The rest of this discussion will be organized around the approaches used for

plan recognition.

The earliest work in plan recognition [109, 128] was rule-based; researchers attempted to come up

with inference rules that would capture the nature of plan recognition. However without an under-

lying formal model these rule sets are difficult to maintain and do not scale well. Later work [22]

distinguish between two kinds of plan recognition intended and keyhole: In intended recognition, the

agent is cooperative and its actions are done with the intend that they are understood. For example, a

tutor demonstrating a procedure to a trainee would provide a case of intended recognition. In keyhole

recognition, the recognizer is simply watching normal actions by an ambivalent agent. These cases

arise, for example, in systems that are intended to watch some human user imperceptibly, and offer
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assistance, appropriate to context, when possible.

Kautz and Allen’s early work [60] has framed much of the work in plan recognition to date. They

defined the problem of keyhole plan recognition as a problem of identifying a minimal set of top-level

actions sufficient to explain the set of observed actions. Plans were represented in a plan graph, with

top-level actions as root nodes and expansions of these actions into unordered sets of child actions

representing plan decomposition. The problem of plan recognition was viewed as a problem of graph

covering. Kautz and Allen formalized this in terms of McCarthy’s circumscription [74].

Kautz also presented an approximate implementation of this approach that recasts the problem as

one of computing vertex covers of the plan graph [59]. To gain efficiency, this implementation assumes

that the observed agent is only attempting one top-level goal at a given time. Furthermore, it does not

take into account differences in the a priori likelihood of different goals. Observing an agent going to

the airport, this algorithm views “air travel,” and “terrorist attack” as equally likely, since they both

cover the observations.

Charniak and Goldman [19] argued that, plan recognition is just abduction, or reasoning to the

best explanation [20], and it could therefore best be done as Bayesian (probabilistic) inference. This

would support the preference for minimal explanations, in the case of equally likely hypotheses, but

also correctly handle explanations of the same complexity but with different likelihoods. However,

their system was unable to handle the case of failing to observe actions. Systems that observe the

actual execution of actions, rather than consuming accounts thereof, often know that some actions

have not been carried out and should be able to make use of this information. Neither Kautz and

Allen nor Charniak and Goldman address this problem of evidence from failure to observe actions.

For Charniak and Goldman, at least, this followed from their focus on plan recognition as part of story

understanding. In human communication, stories are radically compressed by omitting steps that the

reader or hearer can infer based on explicitly-mentioned material and background knowledge.

Systems like those of Charniak and Goldman and Kautz and Allen are not capable of reasoning

like this, because they do not start from a model of plan execution over time. As a result, they cannot

represent the fact that an action has not been observed yet. In general such systems take one of two

solutions. First they can assert that the action has not and will not occur, or second they can be silent

about whether an action has occurred — implying that the system has failed to notice the action, not

that the action hasn’t occurred. Both of these solutions are unsatisfying.

Both Vilain [127] and Sidner [113] present arguments for viewing plan recognition as parsing. The

major problem with parsing as a model of plan recognition is that it does not treat partially-ordered

plans or interleaved plans well. Both partial ordering and interleaving of plans require an exponential
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increase in the size of traditional context free grammars which can have a significant impact on the

computational cost of the algorithm. There are grammatical formalisms that are powerful enough

to capture interleaving. However, the advantage of parsing as a model is that it admits of efficient

implementation when restricted to context-free languages. If this restriction is raised, this diminishes

the argument for using parsing as a model.

Pynadath and Wellman [89] have proposed probabilistic parsing for plan recognition. Using plans

represented as probabilistic context-free grammars (PCFGs) they build Bayes nets to evaluate observa-

tions. However, this approach still suffers from the problems of partial ordered and interleaved plans.

They also propose that probabilistic context-sensitive grammars (PCSGs) might overcome this problem,

but it is significantly more difficult to define a probability distribution for a PCSG.

Geib and Goldman [44, 41, 40] have presented a hybrid logical probabilistic plan recognition method

that is based on weighted model counting. A complete and covering set of models are built by pars-

ing the observations using action grammars that are most similar to ID\LP Grammars [38]. ID\LP

grammars admit partial ordering, and Geib and Goldman further modify the parsing algorithm to al-

low multiple interleaved plans. The probabilities for these models are computed based on a Bayesian

model of plan execution. This allows their system to handle multiple, interleaved, partially ordered

plans as well as the failure to observe actions. They have also proposed extensions to address partial

observability and recognizing goal abandonment. This approaches’ most significant limitation may be

its need to maintain the covering set of explanations for a given set of observations. In some settings

the cost of this process can be prohibitive.

Avrahami-Zilberbrand and Kaminka [6] have reported a approach similar to that of Geib and Gold-

man [44, 41, 40]. It differers in that they check the consistency of observed actions against previous

hypotheses rather than using an action grammar for filtering possible explanations. This allows them

to solve many of the same problems as addressed by Geib and Goldman but does reintroduced the

problem of inference on the basis of failure to observe actions.

Hierarchal Hidden Markov Models (HHMMs) promise many of the efficiency advantages of pars-

ing approaches, but with the additional advantages of supporting machine learning to automatically

acquire their plan models. The first work that we know of in this area was provided by Bui [17] who

has proposed a model of plan recognition based on a variant of HMMs. Unfortunately, in order to

address multiple interleaved goals Bui, like Pynadath and Wellman, faces the problem of defining a

probability distribution over the set of all possible root goal sets.

There’s also work on cognitive assistive systems for the elderly by Liao, Fox, and Kautz [66] that

makes use of HMMs. They use HMMs primarily to track the movements of their subjects, but in-
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corporate information about possible routine movements through layered HMMs. The relative ease

with which spatial regions can be decomposed and the consistent and simple transition probabilities

between regions makes these problems very amenable to HMMs. When the application moves from

these kinds of geographic domains to more symbolic domains as in computer network security the

transition probabilities between states are much less clear and much harder to produce.

6 Summary

To approach research in action at its full complexity by letting a robot system acquire its own experience

and knowledge about movements, objects and possible world changes (and thus their interpretation)

appears difficult at present. One possibility to limit the learning complexity is to constrain experimental

scenarios. Another possibility is to use a-prior knowledge at a suitable abstraction level.

Action understanding straddles in the gray zone between robotics, computer vision and AI and

it has become a major thrust in robotics and computer vision. Another open area of research is ob-

ject recognition, which also plays a major role in this context. During the recent years there is a more

common understanding between researchers on which properties of physical objects to represent to

facilitate the recognition process. Apart from a common understanding for representation, the un-

derstanding of action requires also reasoning about qualitative temporal relationships. This is why

considerable research will be necessary to fully understand the problems associated with action under-

standing.
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